

THE RIETVELD REFINEMENT METHOD

R. B. VON DREELE ANL/APS (retired) vondreele@anl.gov

- Some history first
- Extreme examples
- The math
- Worked example

Acknowledgements: DOE/SC

HISTORY – H.M. RIETVELD

Hugo Rietveld; neutron powder diffractometer, Petten, Netherlands Papers: H.M. Rietveld, Acta Cryst. 22, 151-2(1967)

H.M. Rietveld, J. App. Cryst., 2, 65-71 (1969) Multi-parameter, <u>nonlinear LS curve fitting</u>

PLUTO REACTOR AERE HARWELL – 1970'S

PANDA Diffractometer

Fig. 2. A schematic diagram of a neutron powder diffractometer named PANDA which is installed at A.E.R.E. Harwell.

AKC & RBVD experiments: $2\Theta_m$ 92°, λ =1.57&1.61Å, 2-2.5x10⁵ n/scm², scan @50m/deg!

This is where it starts - Alan's Manual

RRL 73/239

Original with my annotations of additions to input file for my 1973 version – Gaussian peak shapes with an (incorrect) peak asymmetry correction

WHAT DID IT RUN ON? CHILTON ICL1906A – AERE HARWELL, UK

256k 24bit words (~ 800kB) **OS: GeorgeIII & George4** Produced ~1MW of heat About as much compute power as an old cell phone **Banbury Rd. Oxford** ICL1906a similar

WHAT DID WE DO WITH IT? – 3 DAY SCANS! LHe TEMPS.

 $2\theta/dec$

5000

4000

3000

1000

 $Y_0 - Y_0$

count 2000

TiNb₂O₇;A2/m,a=11.89,b=3.80,c=20.37,β=120.2° 603 refl., 1077 data points

> $o-Ti_2Nb_{10}O_{29}$, Amma, a=28.30,b=3.78,c=20.35 843 ref., 1116 data points

R. B. Von Dreele and A. K. Cheetham Proc. R. Soc. Lond. A 1974 338, 311-326

NB: this stuff could be the next battery material, so you just never know.

A FEW MORE RIETVELD REFINEMENT EXAMPLES – BIGGEST & FASTEST

Biggest: Proteins – polymers of amino acids - representations

Rings – protein pattern (HEWL) – X-rays 30s @ 20kV on MAR345; <1mg HEWL

(Air, solvent & Kapton background subtracted)

Texture free sample & no graininess – 1μm "perfect" powder Resolution limit – 1.85Å Residual solvent scattering – background

(110) Reflection, lowest order for tetragonal lysozyme $2\Theta \sim 0.67$ deg

Beam stop holder ~9000 F_{hkl} for HEWL >2Å

Protein powders – "ideal" (1μm & no μstrain)

Initial experiments – various Zn-insulin phases T_6 , T_3R_3 , etc.

Grind T₃R₃ complex in agate mortar with mother liquor High resolution synchrotron x-ray powder patterns (X3b1/NSLS)

Immediately after grinding Indexed – R3 a=81.275Å, c=73.024Å New phase – T₃R₃DC

After 2 days rest Indexed – R3 a=81.084Å, c=37.537Å same as single xtal X3b1/NSLS in Oct. 1999

High Resolution X-ray Powder Diffraction on Proteins

Zn insulin structure determined from powder diffraction data •R3 unit cell a=81.276Å,c=73.037Å •Indexed from pattern •V=418,000Å³!!

- •>1600 atoms!!
- •Rietveld refinement (GSAS)
- •R_{wp}=3.74%

1st Molecular replacement solution!!3 parameter problem

Schematic of T₃R₃DC Zn-insulin complex.

Powder RT structure PDB=1FUB

FUB Same structure as --Single crystal – Lo T phase PDB=1G7A (Scooped the single crystal result!)

View down 3-fold axis - front T_3R_3 turned 9° wrt back T_3R_3

Von Dreele, R. B., Stephens, P. W., Blessing, R. H. & Smith, G. D. (2000). Acta Cryst. D56, 1549-1553. Smith, G.D., Panghorn, W. & Blessing, R.H. (2001). Acta Cryst. D57, 1091-1100

FASTEST: DATA FROM LASER SHOCK STATION OF DYNAMIC COMPRESSION SECTOR AT APS

2d image from a single <u>100ps</u> micropulse from APS for CeO₂

Strongly asymmetric peaks – resemble neutron TOF peaks. NB: light travels ~3cm in 100ps!

PINK BEAM FUNCTION MATHEMATICS

Follows that of Von Dreele, Jorgenson & Windsor (1985) for TOF peaks

Back-to-back exponentials – peak position at join τ =0

$$E(\tau) = \frac{\alpha\beta}{\alpha+\beta} e^{\alpha\tau} \text{ for } \tau < 0 \qquad E(\tau) = \frac{\alpha\beta}{\alpha+\beta} e^{-\beta\tau} \text{ for } \tau > 0$$

Convolute with Gaussian

$$G(\Delta 2\Theta) = \frac{\alpha\beta}{2(\alpha+\beta)}e^u erfc(y) + e^v erfc(z)$$

where

$$u = \frac{\alpha}{2}(\alpha\sigma^2 + 2\Delta 2\Theta), v = \frac{\beta}{2}(\beta\sigma^2 - 2\Delta 2\Theta), y = \frac{\alpha\sigma^2 + \Delta 2\Theta}{\sqrt{2\sigma^2}} \text{ and } z = \frac{\beta\sigma^2 - 2\Delta 2\Theta}{\sqrt{2\sigma^2}}$$

Convolute with Lorentzian

$$L(\Delta 2\Theta) = \frac{\alpha\beta}{\pi(\alpha+\beta)} \{ Im[e^p E_1(p)] + Im[e^q E_1(q)] \}$$

where

$$p = -\alpha \Delta 2\Theta + \frac{i\alpha \gamma}{2}$$
 and $q = -\beta \Delta 2\Theta + \frac{i\beta \gamma}{2}$

Combine: pseudo-Voigt $P(\Delta 2\Theta) = \eta L(\Delta 2\Theta) + (1 - \eta)G(\Delta 2\Theta)$

PINK BEAM FUNCTION & 1ST RIETVELD REFINEMENT

Assume conventional UVW Gaussian & XY Lorentzian variation with Θ

.: Crystal structures at very high pressures can be refined

RIETVELD REFINEMENT IN GSAS-II

RIETVELD MODEL: $I_C = I_I \{ \Sigma K_P F_P^2 M_P L_P P(\Delta_P) + I_B \}$

- I_i incident intensity variable for fixed 2 Θ (e.g. neutron TOF)
- k_p scale factor for particular phase
- F²_p structure factor for particular reflection
- m_p reflection multiplicity
- L_p correction factors on intensity texture, etc.
- $P(\Delta_p)$ peak shape function size & microstrain, etc.
- Sum over all reflections under a profile point (multiple phases)
- **I**_b background function

More complex model than for single crystal diffraction

PROFILE FUNCTIONS P(\Delta_P) – BASICS

 $\Delta_{p} = T_{reflection} - T_{profile} (T = 2\Theta \text{ or TOF})$

Gaussian profile - generally instrumental origin

$$G(\Delta T, \Gamma) = \sqrt{\frac{4\ln 2}{\pi\Gamma^2}} \exp\left[\frac{-4\ln 2(\Delta T)^2}{\Gamma^2}\right]$$

Lorentzian profile - largely sample effect

$$L(\Delta T, \gamma) = \frac{2}{\pi \gamma} \frac{1}{1 + \left(\frac{2\Delta T}{\gamma}\right)^2}$$

Voigt – convolution = G \otimes L Pseudo-Voigt – linear combination = η L+(1- η)G η *via* Thompson, Cox & Hastings – pseudoVoigt = Voigt CW Asymmetry from axial divergence – Finger, Cox & Jephcoat NB: in gsas & GSAS-II, T is 2 Θ in centideg or TOF in μ s

SAMPLE BROADENING

Isotropic Crystallite size & µstrain broadening

Small (<1µm) crystals \rightarrow not δ -functions Size distribution \rightarrow superposition of sharp to broad spots \rightarrow Shape ~Lorentzian Width $\Delta d^* = \text{constant} = \Delta d/d^2 = \Delta \Theta \cot \Theta/d$ Bragg's Law: $\Delta 2\Theta = \lambda \Delta d/d^2 \cos \Theta$ (= X/cos Θ) \rightarrow Scherrer equation k=1,p=size $S = \frac{180k\lambda}{\pi p \cos \Theta}$

Unit cell variation (defects??) Lorentzian distribution \rightarrow shape $\Delta d/d = constant = \Delta d^*/d^* = \Delta \Theta cot\Theta$ Or: $\Delta 2\Theta = 2\Delta dtan\Theta/d$ (= Ytan Θ) $M = 180\mu tan \Theta/\pi$ $\mu - \mu strain$ (x10⁶) parameter

WHAT IS TEXTURE? "INTERESTING PREFERRED ORIENTATION"

Loose powder

Metal wire

Random powder - all crystallite orientations equally probable - flat pole figure

Pole figure - stereographic projection of a crystal axis down some sample direction

(100) random texture (100) wire texture Crystallites oriented along wire axis - pole figure peaked in center and at the rim (100's are 90° apart)

Orientation Distribution Function - probability function for texture

TEXTURE EFFECT ON REFLECTION INTENSITY - SPHERICAL HARMONICS

$$A(h, y) = \sum_{l=0}^{\infty} \frac{4\pi}{2l+1} \sum_{m=-l}^{l} \sum_{n=-l}^{l} C_{l}^{mn} K_{l}^{m}(h) K_{l}^{n}(y)$$

- Projection of orientation distribution function for chosen reflection (h) and sample direction (y)
- K symmetrized spherical harmonics account for sample & crystal symmetry
- "Pole figure" variation of single reflection intensity as fxn. of sample orientation - fixed h
- "Inverse pole figure" modification of all reflection intensities by sample texture - fixed y - Ideally suited for neutron TOF diffraction
- Rietveld refinement of coefficients, C_I^{mn}, and 3 orientation angles - sample alignment

CONSTRAINTS & RESTRAINTS - "WHAT TO DO WHEN YOU HAVE TOO MANY PARAMETERS & NOT ENOUGH DATA"

Constraints – reduce no. of parameters

Derivative vector Derivative vector After constraints $\frac{\partial I}{\partial v_i} = R_{il} U_{lk} S_{kj}$ Before constraint ∂p_j **Rectangular matrices Rigid body User Symmetry** χ_2 t_{xvz} χ_1

FULL MINIMIZATION FUNCTION + RESTRAINTS: ADDITIONAL "DATA"

Least-squares – nonlinear; transcendental functions

 $M = f_Y \sum w_i (Y_{oi} - Y_{ci})^2$ $+ f_a \sum w_i (a_{oi} - a_{ci})^2$ $+ f_d \sum w_i (d_{oi} - d_{ci})^2$ $+f_t \sum w_i (-t_{ci})^4$ $+ f_{p} \sum w_{i} (-p_{ci})^{2}$ $+ f_{v} \sum W_{i} (v_{oi} - v_{ci})^{4}$ $+ f_h \sum w_i (h_{oi} - h_{ci})^2$ $+ f_x \sum w_i (x_{oi} - x_{ci})^2$ $+f_R \sum W_i (-R_{ci})^4$

Powder profile (Rietveld)/Single crystal F_{hkl} **Bond angles Bond distances** Torsion angle pseudopotentials Plane RMS displacements van der Waals distances (if $v_{oi} < v_{ci}$) Hydrogen bonds **Chiral volumes** "φ/ψ" pseudopotential

NB: May be 1,000's of these terms for e.g. proteins

INTENSITY EXTRACTION

Structure factors from powder patterns? → structure solution

Apportion I_o by ratios of I_c(H) for contributing reflections → Sum over all under peak profile Correct for multiplicity & Lp, etc. Result is F²(H)

Here 4 reflections contribute

LeBail algorithm – extracted $F_o^2 \rightarrow \text{new } F_c^2$ then next cycle; refine only background, peak shapes & positions – few parameters No constraints needed for overlaps – Simple

Pawley refinement – F²_o are parameters + background, peak shapes & positions – many parameters Constraints & restraints required for overlaps - Complex

RIETVELD REFINEMENT – A SIMPLE EXAMPLE

AN EXAMPLE: FLUROAPATITE

Add atoms & do default initial refinement – scale & background

Notice shape of difference curve – position/shape/intensity errors

Argonne

ERRORS & PARAMETERS?

- position lattice parameters, zero point (not common)
 - other systematic effects sample shift/offset
- shape profile coefficients sample size/µstrain

(U, V, W, X, Y, etc. in GSAS-II are instrument parms.)

- intensity crystal structure (atom positions & thermal parameters)
 - other systematic effects (absorption/extinction/preferred orientation)

NB – get linear combination of all the above NB² – trend with 2⁽ⁱ⁾ (or TOF) important

DIFFERENCE CURVE – WHAT TO DO NEXT?

- Dominant error peak positions? peak shapes too sharp?
- Refine sample µstrain parameter next & include lattice parameters

NB - EACH CASE IS DIFFERENT – no magic recipe

RESULT – MUCH IMPROVED!

maybe intensity differences remain

- refine coordinates & thermal parms.

RESULT – ESSENTIALLY UNCHANGED

Thus, major error in the initial model –

peak shapes & sample displacement/lattice parameters

A USEFUL PLOT – COVARIANCE MATRIX

Green: cov>0 Red: cov<0 Yellow: cov~0 Cursor reports: Cov or value(esd) on diagonal Can be zoomed!

Beware white bands & nan: Singularities!

THANK YOU

