

Indexing strategies

LS-refinement and autoindexing methods

Anton Dmitrienko Chemical crystallographer

Indexing

Indexing – assignment of crystallographic indices (Miller indices, *hkl*) to the peaks on the diffractogram.

Indexing is a basic procedure for sample characterization with PXRD.

Experimental diffractogram of GeO₂

Indexing

Indexing – assignment of crystallographic indices (Miller indices, *hkl*) to the peaks on the diffractogram.

Indexing is a basic procedure for sample characterization with PXRD which provides information on:

- Unit cell dimensions
- Crystal class
- Positions of all possible reflections in the reciprocal lattice
- Phase purity

Indexing refers to the peak positions only and does not require estimation of the area under the diffraction peak (intensity).

Indexed diffractogram of hexagonal GeO₂

Unit cell parameters from PXRD (cubic system)

Experimental diffractogram of cubic LaB₆

a = b = c; $\alpha = \beta = \gamma = 90^{\circ}$

Primitive cubic unit cell of LaB₆

Unit cell parameters from PXRD (cubic system)

100

Indexed diffractogram of cubic LaB₆

Primitive cubic unit cell of LaB₆

Unit cell parameters from PXRD (cubic system)

Indexed diffractogram of cubic LaB₆

Primitive cubic unit cell of LaB₆

Unit cell parameters from PXRD (orthorhombic system)

Experimental diffractogram of paracetamol trihydrate

Primitive orthorhombic unit cell of Paracetamol trihydrate

Unit cell parameters from PXRD (orthorhombic system)

Experimental diffractogram of paracetamol trihydrate

Primitive orthorhombic unit cell of paracetamol trihydrate

Unit cell parameters from PXRD (orthorhombic system)

$$\lambda = 2d\sin\theta \Rightarrow d = \frac{\lambda}{2\sin\theta}$$

$$a = 2 \times d_{200} = 2 \times \frac{1.5418 \text{ angstrom}}{2 \sin\left(\frac{24.257^{\circ}}{2}\right)} = 7.338 \text{ angstrom}$$

$$b = 2 \times d_{020} = 2 \times \frac{1.5418 \text{ angstrom}}{2 \sin\left(\frac{14.057^{\circ}}{2}\right)} = 12.600 \text{ angstrom}$$

$$c = 2 \times d_{002} = 2 \times \frac{1.5418 \text{ angstrom}}{2 \sin\left(\frac{7.805^{\circ}}{2}\right)} = 22.654 \text{ angstrom}$$

Primitive orthorhombic unit cell of Paracetamol trihydrate

Indexing principle

Indexing procedure requires a general equation that would bind together hkl indices, positions of reflections (20 or d) and unit cell metrics.

This equation can be derived by considering reciprocal lattice.

Reciprocal lattice

Reciprocal lattice – a 3-dimensional map describing positions of diffraction reflections.

Reciprocal lattice can be reconstructed from SC-XRD experiment once all collected frames are summed up.

Reciprocal lattice

Any point of the reciprocal lattice can be described with a *vector equation*:

$$\vec{d}^* = h\vec{a}^* + k\vec{b}^* + l\vec{c}^*$$

Magnitude of d* can be expressed as a dot product of d* with itself:

$$(d^*)^2 = \vec{d}^* \cdot \vec{d}^* = (h\vec{a}^* + k\vec{b}^* + l\vec{c}^*) \cdot (h\vec{a}^* + k\vec{b}^* + l\vec{c}^*)$$

Indexing equation

$$(d^*)^2 = h^2(a^*)^2 + k^2(b^*)^2 + l^2(c^*)^2 + 2hka^*b^*\cos\gamma^* + 2klb^*c^*\cos\alpha^* + 2hla^*c^*\cos\beta^*$$

Hiding cell metrics and coefficients under A-F terms the indexing equation can be obtained:

$$\left| \frac{1}{d^2} = \left(d^* \right)^2 = Ah^2 + Bk^2 + Cl^2 + Dhk + Ekl + Fhl \right|$$

Indexing equation for different crystal classes

$$\left| \frac{1}{d^2} = \left(d^* \right)^2 = Ah^2 + Bk^2 + Cl^2 + Dhk + Ekl + Fhl \right|$$

Various crystal systems apply geometrical constraints that would modify the equation:

Crystal class	Geometrical constraints	Indexing equation in real space
Cubic	$\alpha = b = c; \alpha = \beta = \gamma = 90^{\circ}$	$1/d^2 = (h^2 + k^2 + l^2) / \alpha^2$
Tetragonal	$\alpha = b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$	$1/d^2 = (h^2 + k^2) / a^2 + l^2/c^2$
Orthorhombic	$\alpha \neq b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$	$1/d^2 = h^2/a^2 + k^2/b^2 + l^2/c^2$
Hexagonal	$\alpha = b \neq c$; α = β = 90°; γ = 120°	$1/d^2 = 4(h^2 + hk + k^2) / 3a^2 + l^2 / c^2$
Trigonal	$\alpha = b = c; \alpha = \beta = \gamma \neq 90$	Very complicated
Monoclinic	$\alpha \neq b \neq c$; $\alpha = \gamma = 90^{\circ}$; $\beta \neq 90^{\circ}$	Very complicated
Triclinic	$a \neq b \neq c$; $\alpha \neq \beta \neq \gamma$	Very complicated

Manual and Auto- indexing

Indexing –procedure for generation of *hkl* triplets and their assignment to the diffraction peaks resulting in a determination of a unit cell.

Manual indexing – manual assignment of hkl triples to diffraction reflections.

- Refinement of analogue
- Pattern matching

Autoindexing – indexes are assigned and swapped by the software automatically to solve the indexing equation.

- Trial methods
- Dichotomy methods
- Zone indexing
- Monte-Carlo indexing

Indexing methods: LS-refinement of the analogue

Inorganic lattices (alloys, salts, oxides) have very distinctive crystal structure with only few crystallographic positions.

Crystal structure of the sample can be described through an *isostructural analogue*

Calcium fluoride (fluorite) Fm-3m		Uranium oxide Fm-3m					
Atom	x	У	z	Atom	x	У	z
Ca	0	0	0	U	0	0	0
F	0.25	0.25	0.25	О	0.25	0.25	0.25

Manual indexing: LS-refinement of the analogue

Approach

- 1. Identify the analogue
- 2. Make $hkl 2\vartheta$ list for individual reflections starting from low angle (10-20 reflections based on symmetry)
- 3. Use LS-cell refinement to adjust unit cell parameters of the analogue to the diffractogram from your sample

Least-squares method:

$$S = \left(\sum_{n=1}^{N} w_n \left(2\theta_{obs} - 2\theta_{calc}\right)^2\right) \to \min$$

$$\lambda = 2d \sin \theta \Rightarrow 2\theta_{calc} = 2 \arcsin \left(\frac{\lambda}{2} \cdot \frac{1}{d}\right)$$

$$\frac{1}{d} = \sqrt{Ah^2 + Bk^2 + Cl^2 + Dhk + Ekl + Fhl}$$

n – reflection number

 \mathbf{w}_{n} – weight $(1/\sigma^{2})$

 $2\vartheta_{obs}$ – peak position from experiment

 $2\vartheta_{\it calc}$ – peak position calculated from cell parameters

Diffractograms of UO₂ and its analogue - fluorite

Manual indexing: LS-refinement of the analogue

Advantages

- + Crystal class is known
- + Indices are already provided
- + Fast and reliable
- + LS-refinement generates esd

Disadvantages

- Structural analogue is required
- Misassignment of indices due to large deviations in cell dimensions
- Manual peak picking limits accuracy of cell parameters

Bottom line

- LS-refinement is commonly used in solid state inorganic chemistry when the structural type is known;
- Unique shape of small organic molecules and low packing symmetry prevent identification of structural analogue

Manual indexing: Pattern matching (cubic symmetry)

Indexing equation

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

$$a = d \cdot \sqrt{h^2 + k^2 + l^2}$$

2ϑ (°)	d (Å)
31.90	3.258
36.95	2.826
53.30	1.996
63.50	1.702
66.70	1.629
78.75	1.411

Approach

- 1. Generate a list of unique hkl in the ascending order of the sum $(h^2+k^2+l^2)$;
- 2. Plot a = f(d) for every $(h^2 + k^2 + l^2)$;
- 3. Calculate d-spacing from peak positions;
- 4. Add reflection positions to the graph;
- 5. Move along a axis until all reflections are found on one line.

hkl	$h^2+k^2+l^2$
100	1
110	2
111	3
200	4
210	5
211	6
220	8
300	9
310	10
311	11
222	12
320	13
321	14
400	16

Manual indexing: Pattern matching (cubic symmetry)

Indexing equation

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

$$a = d \cdot \sqrt{h^2 + k^2 + l^2}$$

2ϑ (°)	d (Å)
31.90	3.258
36.95	2.826
53.30	1.996
63.50	1.702
66.70	1.629
78.75	1.411

Approach

- 1. Generate a list of unique hkl in the ascending order of the sum $(h^2+k^2+l^2)$;
- 2. Plot a = f(d) for every $(h^2 + k^2 + l^2)$;
- 3. Calculate d-spacing from peak positions;
- 4. Add reflection positions to the graph;
- 5. Move along a axis until all reflections are found on one line.

hkl	$h^2 + k^2 + l^2$
	N-+ K-+ I-
100	1
110	2
111	3
200	4
210	5
211	6
220	8
300	9
310	10
311	11
222	12
320	13
321	14
400	16

Autoindexing: Trial methods (N-TREOR90)

Trial methods is an automated approach for indexing via pattern matching.

$$Q = \frac{10^4}{d^2} = Ah^2 + Bk^2 + Cl^2 + Dhk + Ekl + Fhl$$

Select crystal class (*n* metric tensors)

Orthorhombic

$$\alpha \neq b \neq c$$
; $\alpha = \beta = \gamma = 90^{\circ}$
 $n = 3$

Assign first *n* peaks with generated *hkl*

$$Ah_1^2 + Bk_1^2 + Cl_1^2 = Q_1$$

$$Ah_2^2 + Bk_2^2 + Cl_2^2 = Q_2$$

$$Ah_3^2 + Bk_3^2 + Cl_3^2 = Q_3$$

Solve with respect to A, B, C

Is solution physical A, B, C > 0?

Calculate Q_{hkl} for all hkl permutations

Do the computed peaks match with experimental?

*
$$Q = \frac{10^4}{d^2} = \frac{4 \cdot 10^4 \sin^2 \theta}{\lambda^2}$$
 - from Bragg's law

Autoindexing: Trial methods (N-TREOR90)

Advantages

+ Trial methods are exhaustive

Disadvantages

- Sample must be pure (no spurious lines)
- Time-consuming for low symmetry

Bottom line

- Trial method is efficient for high symmetry cases
- Suspicious peaks (odd peak width, shape, low intensity) should be examined carefully

$$Permutations = \frac{N!}{(N-n)!}$$

N – number of computer generated hkl
n – number of unknown cell metrics

Number of permutations for 20 generated hkl triplets

Symmetry	Permutations
Cubic	20
Trigonal	380
Tetragonal	380
Orthorhombic	6,840
Monoclinic	116,280
Triclinic	2,790,720

Autoindexing: Dichotomy methods (DICVOL06)

Dichotomy methods are based on the variation of cell parameters within finite ranges, which are progressively reduced via dichotomy algorithm until the solution is found.

$$\Delta Q_{hkl} = |Q_{\min} - Q_{\max}| = (A_{\max} - A_{\min})h^2 + (B_{\max} - B_{\min})k^2 + (C_{\max} - C_{\min})l^2 + \dots$$

 Q_{hkl} ranges calculated for orthorhombic unit cell with dimensions 5.0 < a <10.0 Å, 1.0 < b < 5.0 Å, 1.0 < c < 5.0 Å

Autoindexing: Dichotomy methods (DICVOL06)

6.875 < a < 8.125 Å

- First diffraction peak is not indexed by a single Q_{hkl} range!
- Left part is therefore <u>discarded!</u>

http://pd.chem.ucl.ac.uk/pdnn/unit2/dichot.htm

Right part 7.500 < a < 8.125 Å

- Every diffraction peak is still covered by at least one Q_{hkl} range. Right part is <u>accepted!</u>
- Use for another round of dichotomy until every peak is covered by only one Q range

Autoindexing: Dichotomy methods (DICVOL06)

Advantages

- + Works well for cubic, trigonal, tetragonal and orthorhombic systems
- + Not as dependent on accurate low angle data as TREOR (trial methods) or ITO (zone indexing)

Disadvantages

- Very slow for monoclinic class
- Requires restrictions to index triclinic unit cells

Bottom line

- Processing time can be reduced if cell metric ranges are chosen carefully
- Do not use more than 25 lines, as it may prevent finding any solution at all

Autoindexing: Zone indexing (ITO)

Central zone – plane in reciprocal space passing through the origin (*hk0*, *h0l*, *0kl*)

Peaks lying in the central zones can be described with the following Qs:

$$Q_{hk0} = Ah^{2} + Bk^{2} + Dhk$$

$$Q_{h0l} = Ah^{2} + Cl^{2} + Fhl$$

$$Q_{0kl} = Bk^{2} + Cl^{2} + Ekl$$

Autoindexing: Zone indexing (ITO)

For **hk0** zone the following equations are valid:

$$Q_{hk0} = Ah^2 + Bk^2 + Dhk$$

$$Q_{h00} = Ah^2; Q_{0k0} = Bl^2$$

Therefore:

$$Q_{hk0} = Q_{h00} + Q_{0k0} + Dhk$$

$$D = \frac{Q_{hk0} - Q_{h00} - Q_{0k0}}{hk}$$

*0000*11001010

Figures of Merit

Autoindexing: Figure of Merit

Figure of Merit — a criterion for the physical plausibility of indexing

❖ De Wolff *M*₂₀ (1968)

 $M_{20} = rac{Q ext{ of 20^{th} observed line}}{2 \cdot \langle Q
angle \cdot N_{20}}$ Mean discrepancy between Q_{obs} and Q_{calc}

Synchrotron data:

 $M_{20} \approx 500 - 700$

Laboratory data:

 $M_{20} \approx 20 - 60$

Number of generated hkl with different $Q \le Q_{20}$

- M₂₀ < 4.0 solution is "worthless" and should be discarded;
- $M_{20} > 10.0$ solution is physically reliable if the number of unindexed lines is no more than two
- M_{20} increases systematically with symmetry

Autoindexing: Figure of Merit

Figure of Merit – a criterion for the physical plausibility of indexing

❖ Smyth and Snyder *F* index (1979)

- F_N index is superior for ranking solutions than M_{20}
- F_N index does not estimate physical plausibility of the cell very well

Experimental Consideration

Experimental considerations: Number of diffraction lines

- Greater number of diffraction lines increases the chance of successful indexing
- Low angle peaks are well separated and more important for indexing

Crustal class	Success rate (%)		
Crystal class	10 diffraction peaks 20 diffraction		
Orthorhombic	75	98.5	
Monoclinic	60	91	
Triclinic	30	88	

Diffractogram of paracetamol trihydrate

Coehlo A. A. J. Appl. Cryst. 2003, 36, 89-95.

Experimental considerations: Random errors

- Random error is mainly caused by manual peak peaking
- Peak picking via profile modelling minimizes random errors associated with peak positions

Coehlo A. A. J. Appl. Cryst. 2003, 36, 89-95.

Experimental considerations: Systematic errors

- Sample height displacement results in systematic errors associated with peak positions
- Systematic error of 0.02° can be "disastrous" for determination of unit cell from powder diffraction

Fdd2 10000110010 01110010001

Space Group Determination

Space group determination: Workflow

Space group determination via powder diffraction is based on the geometrical determination of the crystal class and analysis of systematic absences to reveal translational symmetry

- Higher angular accuracy of powder diffractometers allows for a clear distinction between crystal systems, unlike in the case of single crystal diffraction
- Laue classes are indistinguishable via powder diffraction (problematic for cubic, tetragonal, hexagonal and trigonal)
- |E²-1| test is problematic due to an insufficient number of individual reflections

Space group determination: Workflow

- 1. Determine crystal class
- 2. Define centring symbol
- 3. Check for glide planes
- 4. Check for screw axes
- 5. LeBail integration

Space group determination: Workflow

Unit-Cell Geometry	Inferred Crystal System(s)	No. of Space Groups
$a \neq b \neq c$ and $\alpha \neq \beta \neq \&$ gamma; & ne; 90°	Triclinic	2
$a \neq b \neq c$ and $\alpha = \gamma = 90^{\circ}$ and $\beta \neq 90^{\circ}$	Monoclinic	13
$a \neq b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$	Orthorhombic	59
$a = b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$	Tetragonal	68
$a = b = c$ and $\alpha = \beta = \gamma \neq 90^{\circ}$	Trigonal (Rhombohedral)	7
$a = b \neq c$ and $\alpha = \beta = 90^{\circ}$ and $\gamma = 120^{\circ}$	Trigonal or Hexagonal	45
$a = b = c$ and $\alpha = \beta = \gamma = 90^{\circ}$	Cubic	36

Space group determination: Centering

Lattice Centring	Symmetry Operator(s)	Reflection Condition
P	-	None
A	x,1/2+y,1/2+z	hkl: k+l=2n
В	1/2+x,y,1/2+z	hkl: h+l=2n
C	1/2+x,1/2+y,z	hkl: h + k = 2n
F	x,1/2+y,1/2+z; 1/2+x,y,1/2+z; 1/2+x,1/2+y,z	hkl: k + l, h + l, h + k = 2n
I	1/2+x,1/2+y,1/2+z	hkl: h+k+l = 2n
R	1/3+x,2/3+y,2/3+z; 2/3+x,1/3+y,1/3+z	hkl: -h + k + l = 3n

Space group determination: Screw axis

Screw Axis	Axis Direction	Reflection Conditions
21	a // a*	h00: h = 2n
21	b // b*	0k0: k = 2n
21	c // c*	00 l : $l = 2n$
3 ₁ or 3 ₂	c // c*	00 l : $l = 3n$
4 ₁ or 4 ₃	c // c*	00 l : $l = 4n$
42	c // c*	00 l : $l = 2n$
6 ₁ or 6 ₅	c // c*	00 <i>l</i> : <i>l</i> = 6 <i>n</i>
6 ₂ or 6 ₄	c // c*	00 l : $l = 3n$
63	c // c*	00 l : $l = 2n$

Space group determination: Glide planes

Glide Plane	Symmetry Operator	Reflection Condition
$b \perp x$	T-x,1/2+y,z	0kl: k = 2n
$c \perp x$	T-x,1/2+y,z	0kl: l = 2n
$n \perp x$	T-x,1/2+y,1/2+z	0kl: k+l=2n
$d \perp x$	T-x,1/4+y,1/4+z	0kl: k+l=4n
$a \perp y$	1/2+x,T-y,z	h0l: h = 2n
$c \perp y$	x,T-y,1/2+z	h0l: l = 2n
$n \perp y$	1/2+x,T-y,1/2+z	h0l: h+l=2n
$d \perp y$	1/4+x,T-y,1/4+z	h0l: h+l=4n
<i>a</i> ⊥ <i>z</i>	1/2+x,y,T-z	hk0: h = 2n
<i>b</i> ⊥ <i>z</i>	x,1/2+y,T-z	hk0: k = 2n
$n \perp z$	1/2+x,1/2+y,T-z	hk0: h+k=2n
$d \perp z$	1/4+x,1/4+y,T-z	hk0: h+k=4n

Finishing remarks

- Finding the unit cell depends 95% on the quality of input data
- Always calibrate your instrument to eliminate angular deviations by using standards (LaB₆, silver behenate)
- If structural analogue can be identified, LS-refinement of unit cell will be enough
- Use ≈20 low angle peaks for indexing, if no solution is found, remove a few lines and repeat
- Take advantage of several methods for indexing
 (ITO is good for low symmetry, TREOR and DICVOL for symmetry higher than monoclinic)
- Cell candidates with figure of merit $M_{20} \approx 10$ should be given attention
- Perform LeBail fitting for different space groups and compare the results