Synchrotron Three-Dimensional X-ray Diffraction (3D-XRD)

Karim Louca

Associate Scientist at Brockhouse X-ray Diffraction & Scattering (BXDS) Sector

Canadian Powder Diffraction Workshop 18

July 31st 2025

Outline

- Background
- 3D-XRD at ESRF
 - Introduction
 - Data processing
 - Results
- 3D-XRD at CHESS
 - Introduction
 - Results
- Developing 3D-XRD at CLS
 - Stress-Rig and Huber Components
 - Dataprocessing complementary tool
- Final Remarks: Where can I do 3D-XRD?

What is 3D-XRD?

- Microscopy technique for characterizing polycrystalline materials.
- Utilizes hard X-rays (30 100 keV) to investigate the materials at the microand nano- levels
- Works through Bragg condition.
- The final outputs are grain positions, orientations and elastic strains/stresses in three dimensions

Background – Polycrystalline Materials

Background – Diffraction Techniques

Synchrotron-1: European Synchrotron Radiation Facility (ESRF), Grenoble, France

Beamline: ID11

Topic: Deformation Twinning (Masters)

How 3D-XRD works?

- This method was developed by Henning Poulsen in 2004 [1].
- Electromagnetic radiation is generated by acceleration of charged particles (i.e. electrons)
- The x-ray beam is struck on the sample through focusing techniques
- The scattered rays are collected on a two-dimensional detector
- The sample stage is rotated to collect diffraction patterns at all angles
- Objective: Study deformation twinning in hexagonal close-packed (HCP) metals

ESRF Setup

Reference [1] H. F. Poulsen, vol. 5. Springer, 2004.

Data Processing – Indexing and Fitting

Data processing: Assembling Layers and Matching Across Loading Steps

Assembling Layers

Matching

Across

Loading Steps

Results

Deformation Twinning Slip **Twinning** Twinning Slip Direction Direction **Schematic of crystal** plasticity deformation mechanisms: slip and deformation twinning

Deformation Twinning in 3D-XRD

3D-XRD grain map of parent and twins

References

[1] H. Abdolvand, K. Louca, C. Mareau, M. Majkut, and J. Wright, Acta Mater., vol. 196, pp. 733-746, 2020 [2] K. Louca, H. Abdolvand, C. Mareau,

M. Majkut, and J. Wright, Nature Commun. Mater., vol. 2, no. 1, p. 9, 2021

DISCOVERY AT THE SPEED **OF LIGHT**

Comparison with EBSD

Algorithm

- Find common largest grain.
- Fix center of map.
- Apply misorientation and distance criterion.

Comparison with EBSD: Voronoi Maps

 Neighborhood population of each reconstructed map is compared to EBSD,

• MQF =
$$\frac{\begin{array}{c} \text{Number of} \\ \text{matched neighbors} \\ \hline \text{Total Number of neighbors} \\ \text{measured in the EBSD grain map} \end{array}} \times 100\%$$

 94%, 90%, 81%, 80% of grain neighbors were matched for Voronoi and weighted Voronoi EBSD and 3D-XRD respectively.

Synchrotron-2: Cornell High Energy Synchrotron Source (CHESS), Cornell University, NY, US

Beamline: Forming and Shaping Technology (FAST) **Topic**: Micromechanics of notched geometries (PhD)

Experimental Setup

Experiments

- Objective: Acquire microstress distributions in the vicinity of notches and investigate the role of microstructure.
- <u>Study-1</u>: 50 load-unload cycles on two pure zirconium specimens with **radial** texture with two different notch geometries.
- <u>Study-2</u>: 35 load-unload cycles on two pure zirconium specimens with **axial/soft** texture with two different notch geometries.

Data processing: Procedure similar to ESRF. Python

library: HEXRD

Tensile Rig

Results (Asymmetrical Maps)

Synchrotron-3: Canadian Light Source, Saskatoon, SK, CA Beamline: Brockhouse X-ray Diffraction Sector (BXDS)

Topic: Commissioning the 3D-XRD technique

Bringing 3D-XRD to the CLS

Where can I do 3D-XRD?

ESRF, ID11

CHESS, FAST(3A)

APS, 1-ID

Diamond Light Source, I12 JEEP

Toyota Beamline, Spring-8

Lab at University of Michigan, Ann Arbor

Thank You

