

INTRODUCTION TO POWDER DIFFRACTION INSTRUMENTATION

BRIAN TOBY Senior Scientist

Canadian Centre canadien Light de rayonnement Source synchrotron

OUTLINE

- Powder diffraction basics: why it's harder
- Laboratory instrumentation
- Differences between X-ray & neutron diffraction
- CW and TOF neutron diffraction
- Synchrotron x-ray diffraction
 APS instrumentation
- How to get neutron/synchrotron time

Diffraction from random polycrystalline material

In a sufficiently <u>large</u>, <u>randomly</u> oriented polycrystalline sample (e.g. a powder) contains a very large number of crystallites.

A beam impinging on the sample will find a representative number of crystallites in the right orientation for diffraction

Diffraction occurs only at specific angles, those where Bragg's Law is satisfied.

BRAGG CONES IN POWDER DIFFRACTION

SIMPLEST APPROACH TO POWDER DATA COLLECTION: LARGE-AREA 2D DETECTION

Good:

- Radial integration avoids lowangle asymmetry
- Full pattern measurement can be very fast (typical ~1 sec, but 100 ns possible!)
- With short wavelengths, PDF data collection possible

Not so good:

- Finite sample & pixel size degrades resolution
- No rejection of air & container scatter or fluorescence

WHY IS POWDER DIFFRACTION HARD?

- In a single-crystal experiment, background is spread out over a sphere, but in powder diffraction the same scattering is concentrated into a single line
 - powder backgrounds are higher and weak peaks are harder to see
- Powder reflections overlap, sometimes due to lack of resolution, but sometimes because different lattice planes have the same Q values
 - All that can be measured is the sum of overlapped reflections (phase problem + overlap problem)

Powder diffraction experiments tend to be "information starved"

- It tells us information about our sample, but not always all that we want to know.
- Some determinations (absolute configuration, some magnetic moment directions) not possible from powders

WHY DO WE DO POWDER DIFFRACTION?

- Learn where the atoms are (when appropriate single crystals are not available)
- Determine the chemical phase(s) in a sample
- Measure lattice constants
- Quantify the components of a mixture
- Learn about physical specimen characteristics such as stress, texture, microstrain or crystallite sizes
- Occupancies of elements amongst crystallographic sites (needs high-Q data, often from neutrons)

BRAGG-BRENTANO DIFFRACTOMETER

Basic lab diffractometer

This is a θ-2θ instrument

- Tube is stationary
- Stage rotates to θ
- Detector rotates to 2θ

Also possible:θ-θ

- Sample is stationary
- Tube rotates to θ
- Detector rotates to θ (more expensive but keeps sample horizontal)

OPTIONAL LAB INSTRUMENT COMPONENTS

Rotating anode source for more flux

Incident beam monochromator rejects Kα₂ Mirrors can improve flux

Significant speed-up can be obtained, at the expense of resolution and fluorescence sensitivity, through use of linear (position-sensitive) detectors or an area detector

Sample stages can control temperature, humidity or provide sample changing

https://kemi.uu.se/angstrom/research/inorgan ic-chemistry/x-ray-laboratory/3-siemensd5000/

Graphite analyzer (diffracted beam monochromator) rejects fluorescence & K β (K α_2 remains)

RECOGNIZING WHEN TO LOOK BEYOND YOUR LAB

Tough problems require the best available data (and sometimes not even that will do)

Reasons to use a synchrotron/neutrons: **resolution**, **speed**, **spot size**, **special environments**, or **wavelength control**

- Synchrotrons and neutrons usually provide data with better resolution, faster, and/or with better sensitivities
- Some problems (indexing, structure solution, complex structure fitting) may be tough (sometimes impossible) with lab data
- Measurement under "exotic" conditions (temperature, pressure, chemistry...)
- Site occupancy measurement usually needs neutrons or short-λ x-rays
- "Light atoms" & magnetism require neutrons
- Powder diffraction is an "information starved" technique, better data = more structural information. Some problems need neutrons and x-rays.
- But note:
 - Sample and instrumental broadening convolute (add), if your peaks show significant sample broadening on a lab instrument they will not be sharp with a synchrotron – but still consider an area detector instrument
 - Sometimes 11-BM data are too good
 - Phase purity: ~1% (lab), ~0.5% neutrons ~0.1% (synchrotron)
 - · Broad peaks can hide sample issues

Non-commercial access is free, but much use (mail-in excepted) requires travel

Argonne 🛆

Resonant scattering: scattering at a resonance edge causes atoms to "light up"

Experiments are sometimes performed at wavelengths close to absorption edges to enhance the scattering from particular elements

X-rays

The x-ray form factor has in fact three components:

- f(Q) + f'(λ) + i f"(λ)
 - f is determined by Q and the number of electrons in an atom and is independent of wavelength
 - f' and f" are small except at wavelengths very close to an atom's absorption edge

At wavelengths close to an edge absorption becomes high; fluorescence occurs above the edge.

Neutrons

Scattering lengths for most atoms are wavelength-independent.

A similar "resonant scattering" type experiment can sometimes be performed comparing samples containing different isotopes (\$\$ to \$\$\$\$\$)

A few isotopes (mostly lanthanides and actinides) have adsorption edges at accessible wavelengths.

 This is usually a curse rather than a blessing: it makes TOF neutron scattering had to analyze

OR BY SPALLATION: A BEAM OF PROTONS IS COLLIDED WITH A METAL TARGET Producing neutrons by spallation Fast proton Heavy nucleus (Ta, U, Hg) Fast Neutrons are slowed by collisions in a moderator (CH₄, H₂O, D₂O) Crystal Analyzer Microvolt Magnetism and Liquids Reflectomete Chopper Spectromete Spectrometer Disordered Materials Instrument 100-Microvolt Spectrometer SANS Instrumen Engineering Single-Crystal Diffractometer Powder Diffractometer

Neutron Powder Diffraction with Spallation Source

- Spallation source provides a broad band of wavelengths in sharp pulses
 - TOF detection allows measurement of intensity versus wavelength
 - Each detector provides a full diffraction pattern
 - Data collection times:
 - Seconds to hours

Δ

LIGHT IS MADE AT THE SYNCHROTRON BY DEFLECTING (ACCELERATING) ELECTRONS

WHY USE A SYNCHROTRON FOR POWDER DIFFRACTION?

Synchrotrons offer very bright, low divergent x-rays with tuneable wavelengths. This allows x-ray diffraction measurements that can be (but not all at the same time)

- Very quick (typical 0.1 sec., but with a single x-ray pulse, ~0.1 microsec possible)
- Short λ (high energy):
 - Extreme environments, requiring container penetration
 - Very high Q: needed for PDF
- With perfect-crystal monochromator and analyzers: Very high resolution, complete fluorescence rejection, very low backgrounds
- Resonant scattering (anomalous dispersion): differentiate scattering by element by measuring diffraction just below an element's absorption edge

37

 Very small spot size: diffraction imaging and high-pressure (diamond anvil) measurements

Argonne 🛆

WHY USE THE APS?

- The APS is the country's brightest x-ray source and only one of four highenergy rings in the world.
- The APS has ~30 operating sectors and 68 beamlines that each have a variety of instruments; typically two or more can operate simultaneously.
 - Sectors may be operated by external collaborative access teams (CATs) or by the APS (XSD – X-ray Science Division)
- The APS has instruments that offer virtually all types of x-ray measurements
 - Nearly all instruments are best-in-class or are closely comparable to the best
 - Instruments can be accessed by scientists from across the world on a competitive proposal system
 - Externally reviewed
 - No costs for non-proprietary research
- Other North American synchrotrons: CLS (Saskatoon, Canada), NSLS-II (Long Island, NY), ALS (Berkeley, CA), SSRL & LCLS (Palo Alto, CA), CHESS (Cornell Univ., NY)

APS MEASUREMENT CAPABILITIES

- X-ray Spectroscopy (DAFS, EXAFS, XPCS, X-ray Raman, XPS, dichroism...)
- Imaging/Microscopy:
 - Microfluorescence, Radiography, Phase Contrast, Tomography, Diffraction, Photoemisson, Ptychography
- Diffraction
 - Small angle (SAXS, GISAX, µSAXS)
 - High pressure diffraction (DA/MA, SX/Powder, Mono/Laue/ED)
 - Surface diffraction (Reflectivity, COBRA, Crystal Truncation Rods, Standing waves,...)
 - Liquids diffraction
 - Single crystal
 - Macromolecular
 - Small cell
 - Fiber diffraction
 - Powder diffraction (high resolution, Pair Distribution Function, *in situ & operando,* protein...)
 - HEDM & Laue grain microscopy
 - Bragg coherent diffraction imaging

- Dynamics
 - X-ray Photon Correlation Spectroscopy (XPCS)
 - Mössbauer Spectroscopy Argonne

BEAMLINE 11-BM: HIGH RESOLUTION POWDER DIFFRACTION

- Mail-in access:
 - Free for non-proprietary experiments
 - Measurements between 90K and 400 C
 - Standardized sample holder
 - Fast Turn around time: Proposal to Data in 3-6 weeks
 - 30 KeV (standard) and 27 keV (for Sn containing samples)
 - Proposal is good for 2 years and can be utilized in batches

On-Site measurements

- 5 K to 1600 C
- In-situ and in-operando conditions
- Large numbers of samples or complex protocols
- Allows for feedback to adjust measurement protocol

http://11bm.xray.aps.anl.gov

11-ID-B: DEDICATED PDF BEAMLINE

Specializing in operando and in situ measurements:

- High-throughput ambient measurements:
 - Sample changers with data acquisition automation
- Variable temperature
- Oxford cryostream 700 plus (80-500 K)
- Wire-wound furnace (RT-1000 C)
- Capillary block heater furnaces (RT-800 C)
- Variable pressure
 - Diamond Anvil Cells (0-10 GPa)
 - Large volume, fluid cell (0-0.6 GPa)
- Chemical environments
 - Modular flow-cell/furnace apparatus
 - Inert and hazardous gas handling system
 - Rapid gas switching valves
 - Programmable mass-flow controllers
 - Residual gas analyzer (with advanced notice)
 - Specialized environments:
 - Integrated setup for multi-sample electrochemical cell (AMPIX) operations
 - Combined PDF/DRIFT spectroscopy measurements

Now with mail-in program

WIDE RANGE OF SAMPLE ENVIRONMENTS **AVAILABLE AT SRS BEAMLINES** N₂ Cryostream:

High-throughput

- Magnetic base, robotic arm sample changer •
- Multi-sample cassette •
- Multi-cassette changer*

Variable temperature

- N_2 Cryostream (80-500 K)
- Wire-wound furnace ($\leq 1000 \text{ C}$)
- Linkam THS1500 (<1500 C)
- Linkam THS600 (-200 600 C)
- He Cryostat (10 K RT)
- Hot air blower (≤ 1000 C)
- High-temperature capillary heater

Pressure

- Diamond anvil cell (DAC)
- Large volume fluid cell •
- Syringe pump

Multimodal

- Combined DRIFT/PDF
- In situ Raman spectrometer

Variable temperature

- Flow-cell/furnace •
- Rapid gas switching
- Non-hazardous gases
- Hazardous gases
- Mass flow controllers
- Vapor saturator

AMPIX cell

RATIX cell*

Electrochemistry

Residual gas analyzer •

Hot air blowe

Argonne 🛆

Flow cell/furnace

THE APS HAS A NUMBER OF OTHER DIFFRACTION INSTRUMENTS

 For single crystal, ChemMatCARS (or ALS, Berkeley) for crystals too small for a conventional instrument or for resonant scattering (anomalous dispersion)

Most powder diffraction is done with beamlines run by the SRS Group, but other choices:

- 6-ID-D for very high temperature (1000-2000+ C)
- 1-ID for high energy diffraction energy
- 1-ID & 11-ID-C for applied stress

GETTING BEAMTIME TIME

- Usually beamtime access requires a proposal due with a specific deadline (APS & NSLS-II, 3x/year; SNS, HIFR & NIST 2x/year).
 - Plan ahead: ~6 months from proposal to beamtime
 - 1st time users: ask for some help from beamline staff/user office (professors...)
- Mail-in: proposals may be submitted at any time (3-6 week turnaround, if you avoid end of cycle)
- Rapid-access: proposals may be submitted at any time, but not all beamlines will put time aside
 - Needs a justification for why a proposal could not be planned and why it will not wait

Sometimes beamline scientists will "sneak in" a short measurement as a favor or for a "proof of concept" (treat such data as a collaboration, include them as coauthors on pubs)

Coauthorships for beamline staff: consider their input and involvement, but "European model" (beamtime=collaboration) is not followed. If in doubt, ask group leader Argonne

BASICS OF PROPOSAL WRITING

- Briefly explain why you are doing the science (relates to energy storage, catalysis, materials discovery, targeted curiosity...)
- What materials you want to study and what you want to learn
- Why does the work need a synchrotron (or neutrons)
 - Resolution or sensitivity (for 11-BM)
 - Speed, in situ/operando for 17-BM, etc.
 - Specific element scattering (neutrons)
 - Expanded Q-range
 - Sample penetration
 - Temperature range/environmental control
- How will the data be used (intended publication, thesis,..)
- How many samples/temperatures; total time needed

These instruments are typically fully or over-subscribed, so you need to make your proposed use appear to be valuable

Contacting a beamline scientist can save you a lot of time or from proposing an impossible measurement (but understand they are <u>way</u> overworked)

Argonne 🛆