

OPERANDO X-RAY DIFFRACTION ON LICOO₂ BATTERIES UNDER NON-AMBIENT CONDITIONS

JULY 31ST, 2025

PRESENTER: ELAA BEN FREDJ

CANADIAN POWDER DIFFRACTION WORKSHOP 18 (CPDW18)

INTRODUCTION

Why Study LiCoO₂ and Battery Structure Under Operation?

- LiCoO₂ (LCO): Common cathode in Li-ion batteries
- High energy density of LCO
- Structural instability at high voltages or at elevated and low temperatures
- Need to study structure under realistic operating conditions

OPERANDO XRD SETUP UNDER NON-AMBIENT CONDITIONS

- Li_{1-x}CoO₂ (LCO) half-cell in coin cell format with Li metal anode
- Anton Paar XRDynamic 500
- Real-time cycling with potentiometer
 - Galvanostatic cycling
 - Charging rate: C/10
 - Full charge/discharge cycle from ~ 3.9 V
 up to 4.2 V and then down to 3.0 V.
- TTK 600 low-temperature chamber

XRDynamic 500 with TTK 600

Battery sample holder TTK 600 (Reflection).

TTK 600 Low Temperature Chamber for in situ and in operando XRD studies with temperature range of -180 to +130 °C.

ELECTROCHEMICAL OBSERVATIONS DURING LCO CYCLING

Charge curve for LCO coin cell at ambient conditions.

Close-up view of LCO charge curve. Slope changes are highlighted by red circles.

ELECTROCHEMICAL OBSERVATIONS DURING LCO CYCLING

Capacity change derivative plotted against voltage. Peaks indicating slope changes in charging curve are marked with + (for charging) or - (for discharging).

STRUCTURAL CHANGES DURING BATTERY CYCLING LAYER STRUCTURE OF LITHIUM COBALT OXIDE

- LiCoO₂ crystallizes in the rhombohedral space group R3*m.
- LiCoO₂ forms a layered structure composed of edge-sharing, slightly distorted CoO₆ octahedra.

Co octahedrons of the LiCoO₂ structure observed along the crystallographic b- (left) and c-axis (right).

Layered CoO₂ structure with Li located between the layers.

Schematic illustration of the first Li-ion battery (LiCoO₂/Li⁺ electrolyte/graphite). Yuanyuan, Bao et al., (2025). Journal of Solid State Electrochemistry. 1-25.

STRUCTURAL CHANGES DURING BATTERY CYCLING PEAK SHIFTS AND UNDERLYING STRUCTURAL CHANGES

Heat maps of XRD scans for 003, 101, and 104 reflection of LCO during battery cycling (left), and charging/discharging curve (right).

In situ XRD monitor the structural changes in real time:

- Peak shifts
- Lattice parameter changes
- Phase transitions

STRUCTURAL CHANGES DURING BATTERY CYCLING

PHASE TRANSITIONS

Crystal structure of (a) LiCoO₂, and (b) Li_{0.6}CoO₂. Two planes of the (003) family. The distance between the Co layers increases.

Heat map of XRD scans for 003 reflection of LCO during battery cycling (left), and charging/discharging curve (right).

Ξ.,,,

STRUCTURAL CHANGES DURING BATTERY CYCLING PHASE TRANSITIONS

Heat maps of XRD scans for 101, and 104 reflection of LCO during battery cycling (left), and charging/discharging curve (right).

NON-AMBIENT CYCLING OF LCO

- Capacity decreases at low temperatures
- Capacity is relatively stable between 10 °C and 45 °C
- At higher temperatures:
 - > capacity measured during discharge drops
 - > capacity obtained during charging seems to increase.

Capacity and Coulomb efficiency of LCO coin cell at different temperatures.

NON-AMBIENT CYCLING OF LCO

- Similar charging curves from 10 °C to 35 °C
- At temperatures above 35 °C, the charging is significantly prolonged
- → irreversible side reactions, facilitated at higher temperatures.
- Below 10 °C, the charging voltage increases significantly, the discharge happens much faster
 - → increased internal resistance in the battery

Temperature-dependent charging and discharging curves of LCO coin cell.

Anton Paar

NON-AMBIENT CYCLING OF LCO

CONCLUSION

- Operando XRD is a powerful tool for real-time structural insights
- Non-ambient studies uncover thermal/chemical instability
- Helps design more robust and safer Li-ion batteries

Q&A