

Nuclear Materials Research Group Department of Mechanical and Materials Engineering

Texture

Levente Balogh

Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada

18th Canadian Powder Diffraction Workshop 28 – 31 Jul 2025

Outline

- Introduction
- What is Crystallographic Texture?
 - Examples
- Visualise Texture: Pole Figures
- Quantifying texture:
 - Euler angles
 - ODF: Orientation Distribution Function
- How can one measure crystallographic texture?
 - Electron Backscatter Diffraction (EBSD)
 - X-ray Diffraction (XRD)
 - Neutron Diffraction (ND)
 - High-Energy Synchrotron X-ray Diffraction
 - Other ND methods

Crystallographic texture: makes materials anisotropic

Earing formation during the deep drawing of cups made from circular blanks which were cut from a rolled Al plate

J. Hirsch, TMS Light Metals., (2008)

E. Olaf, J. Hirsch, Virtual Fabrication of Aluminium Products, (2006), 189-198

Crystallographic texture: preferred orientation of crystallites with respect to the sample coordinate system

Random orientation

Preferred orientation

Highly oriented - close to a single crystal

Zr-2.5Nb alloy Pressure Tubes in CANDU

CANDU Basic Lattice Cell for 37-Element Fuel (Not to Scale)

CANDU Zr-2.5Nb alloy Pressure Tubes have a very specific texture created by the manufacturing process

Metals made by Additive Manufacturing (3D printing) typically develop strong crystallographic textures

T. Debroy et al., J. Mater. Sci.

Technol., 92, (2018) 112-224.

https://giphy.com/explore/laser-sintering

Metals made by Additive Manufacturing (3D printing) typically develop strong crystallographic textures

Texture of Additively Manufactured Ti-15Mo-5Zr-3Al alloy (bcc structure)

Hagihara, K., and Nakano, T., JOM, 74 (2022) 1760-1773.

Pole Figures:

a method (from many) to visualize the crystallographic texture of polycrystals

A **Pole Figure** plots the distribution of crystallographic directions/planes in the sample coordinate system.

Pole Figures typically use **Stereographic Projection** to represent vector directions on a plane

Constructing a Stereographic Projection

Constructing a Stereographic Projection

Stereographic Projection- Plane normal P is projected towards the south pole onto the equatorial plane at p. Angular relations are preserved in the projection and traditionally measured by a Wulff net.

Prof. B. Diak, MECH 851,

Constructing a Stereographic Projection

Projection of all the {100} poles onto the equatorial plane using the stereographic projection.

Prof. B. Diak, MECH 851, Queen's University

Pole Figures constructed with Stereographic Projection

Pole Figures: visualize the crystallographic texture of polycrystals

Stereographic projections of {100}, {110} and {111} discrete pole figures for Al.

Prof. B. Diak, MECH 851, Queen's University

Pole Figures: visualize the crystallographic texture of polycrystals

Stereographic projections of {100} and {110} contoured pole figures for Al Compare to the discrete ones on previous slide.

Prof. B. Diak, MECH 851, Queen's University

Pole Figures:

visualize the crystallographic texture of polycrystals

Zr-2.5Nb alloy Pressure Tubes in CANDU

CANDU Basic Lattice Cell for 37-Element Fuel (Not to Scale)

CANDU Zr-2.5Nb alloy Pressure Tubes have a very specific texture created by the manufacturing process

Metals made by Additive Manufacturing (3D printing) typically develop strong crystallographic textures

Texture of Additively Manufactured Ti-15Mo-5Zr-3Al alloy (bcc structure) Hagihara, K., and Nakano, T., JOM, 74 (2022) 1760-1773.

Describe the orientation of one grain/crystallite mathematically

The orientation of a crystal, i.e., a 3D object, can be described by the same mathematical framework as 3D rotations. Such a description needs 3 parameters:

- Euler angles (ϕ_1, ϕ_2, Φ) most popular
- Quaternions

Describe the orientation of one grain/crystallite mathematically: Quaternions

- In mathematics, the quaternion number system extends the complex numbers.
- Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, robotics, magnetic resonance imaging and crystallographic texture analysis.

$$a+b\,\mathbf{i}+c\,\mathbf{j}+d\,\mathbf{k}$$

Multiplication table
Non commutativity
is emphasized by
colored squares

×	1	i	j	k
1	1	i	j	k
i	i	-1	k	-j
j	j	-k	-1	i
k	k	j	-i	-1

https://en.wikipedia.org/wiki/Quaternion

Describe the orientation of one grain/crystallite mathematically: Euler angles (ϕ_1, ϕ_2, Φ)

Describe the orientation of one grain/crystallite mathematically: Euler angles (ϕ_1, ϕ_2, Φ) Bunge notation

Rotation 1 (ϕ_1): rotate axes (anticlockwise) about the (sample) 3 [ND] axis; \mathbf{Z}_1 .

Rotation 2 (Φ): rotate axes (anticlockwise) about the (rotated) 1 axis [100] axis; **X**.

Rotation 3 (ϕ_2): rotate axes (anticlockwise) about the (crystal) 3 [001] axis; \mathbf{Z}_2 .

Prof. B. Diak, MECH 851, Queen's University

Describe the crystallographic texture of a large population of grains the Orientation Distribution Function (ODF)

ODF:

- Assigns to every possible orientation represented by a set of Euler angles (ϕ_1, ϕ_2, Φ) a probability density (e.g., the volume fraction of grains with a certain orientation)
- A statistical distribution, which gives volume fraction dV/V of crystallites having the orientation g (i.e., (ϕ_1, ϕ_2, Φ)) within the orientation element dg:

$$dV/V = f(g) dg$$

- The ODF fully/statistically describes the texture of the given polycrystal
 - If the ODF is known a pole figure for any (hkl) can be derived from it

Describe the crystallographic texture of a large population of grains the Orientation Distribution Function (ODF)

Identification of some common fcc texture components and fibres in Euler space.

Describe the crystallographic texture of a large population of grains the Orientation Distribution Function (ODF)

AA1050 Cold Rolled 60% ODF [from Delannay et al. (2002)]

Prof. B. Diak, MECH 851, Queen's University

Measuring the Crystallographic Texture experimentally

One way to approach Texture Measurements:

Measure a sufficient number of **pole figures** experimentally: XRD, Neutron Diffraction, EBSD

Calculate the Orientation Distribution Function (ODF)

Measuring the Crystallographic Texture experimentally Electron Backscatter Diffraction (EBSD)

Lehto et al., Welding in the World, 66, (2022) 363–377.

Measuring the Crystallographic Texture experimentally Electron Backscatter Diffraction (EBSD)

Texture of Additively Manufactured Ti-15Mo-5Zr-3Al alloy (bcc structure) Hagihara, K., and Nakano, T., JOM, 74 (2022) 1760-1773.

Measuring the Crystallographic Texture experimentally Neutron Diffraction (ND)

- Transmission method used
- Specimen typically 1cm³
- Entire PFs from one specimen >> ODF
- Bulk texture measured directly

Measuring the Crystallographic Texture experimentally High Energy Synchrotron XRD (no direct measurement of Pole Figures)

 $\lambda = 2d\sin\theta$

 $E = hc/\lambda$

e.g. E=80keV

 $\lambda = 0.15 \text{Å}$

d = 1Å

 $\theta \approx 4^{\circ}$

High energy X-ray diffraction: wavelength much shorter than atomic spacing

I-ID beamline, APS ANL

Example CCD image

Note the effect of texture: the intensity along the Debye-Scherrer rings varies

Measuring the Crystallographic Texture experimentally Neutron Diffraction (ND) (no direct measurement of Pole Figures)

HIPPO - High-Pressure-Preferred Orientation instrument at the Los Alamos Neutron Science Center (LANSCE)

- Using time-of-flight ND, each detector panel records a full, individual diffraction pattern
- A sample needs to be measured only in 3-4 rotations to obtain the ODF.
- Fast and efficient

https://lansce.lanl.gov/facilities/lujan/instruments/hippo/index.php

Thank you for your attention!

