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• Introduction

• What is Crystallographic Texture?

o Examples

• Visualise Texture: Pole Figures

• Quantifying texture:

o Euler angles

o ODF: Orientation Distribution Function

• How can one measure crystallographic texture?

o Electron Backscatter Diffraction (EBSD)

o X-ray Diffraction (XRD)

o Neutron Diffraction (ND)

o High-Energy Synchrotron X-ray Diffraction

o Other ND methods

Outline
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J. Hirsch, TMS Light Metals., (2008)

E. Olaf, J. Hirsch, Virtual Fabrication of 

Aluminium Products, (2006), 189-198

Crystallographic texture: makes materials anisotropic 

Earing formation during the deep drawing of cups made from circular blanks 

which were cut from a rolled Al plate
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Crystallographic texture: preferred orientation of crystallites with 

respect to the sample coordinate system
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Zr-2.5Nb alloy Pressure Tubes in CANDU

Zr-2.5Nb
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D.D. Radford and M.J. Worswick, 

J. Phys. IV France 10 (2000)

CANDU Zr-2.5Nb alloy Pressure Tubes have a very specific texture

created by the manufacturing process

Pressure Tube wall section
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T. Debroy et al., J. Mater. Sci. 

Technol., 92, (2018)112–224.

Metals made by Additive Manufacturing (3D printing) typically develop 

strong crystallographic textures

https://giphy.com/explore/laser-sintering

https://giphy.com/explore/laser-sintering
https://giphy.com/explore/laser-sintering
https://giphy.com/explore/laser-sintering
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Hagihara, K., and Nakano, T., JOM, 74 (2022) 1760-1773.

Metals made by Additive Manufacturing (3D printing) typically develop 

strong crystallographic textures

https://giphy.com/explore/laser-sintering

Texture of Additively Manufactured Ti-15Mo-5Zr-3Al alloy (bcc structure)

https://giphy.com/explore/laser-sintering
https://giphy.com/explore/laser-sintering
https://giphy.com/explore/laser-sintering
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Pole Figures: 

a method (from many) to visualize the crystallographic texture of 

polycrystals

A Pole Figure plots the distribution of crystallographic directions/planes in the sample 

coordinate system.

Pole Figures typically use Stereographic Projection to represent vector directions on 

a plane

Z0

Y0
X0

Z0

Y0

X0

Prof. B. Diak, MECH 851, 

Queen's University
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Constructing a Stereographic Projection

TD

Prof. B. Diak, MECH 851, 

Queen's University
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Stereographic Projection- Plane normal P is 

projected towards the south pole onto the equatorial 

plane at p.  Angular relations are preserved in the 

projection and traditionally measured by a Wulff net.
Prof. B. Diak, MECH 851, 

Queen's University

Constructing a Stereographic Projection
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Projection of all the {100} poles 

onto the equatorial plane using 

the stereographic projection.

Prof. B. Diak, MECH 851, 

Queen's University

Constructing a Stereographic Projection
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A

B
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E
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A

Prof. B. Diak, MECH 851, 

Queen's University

Pole Figures constructed with Stereographic Projection
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Stereographic projections of {100}, {110} and {111} discrete pole figures for Al.

Pole Figures: 

visualize the crystallographic texture of polycrystals

Prof. B. Diak, MECH 851, 

Queen's University
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Pole Figures: 

visualize the crystallographic texture of polycrystals

Stereographic projections of {100} and {110} contoured pole figures for Al  

Compare to the discrete ones on previous slide.  

Prof. B. Diak, MECH 851, 

Queen's University
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50% roll

75% roll

95% roll

Prof. B. Diak, MECH 851, 

Queen's University

Pole Figures: 

visualize the crystallographic texture of polycrystals
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Zr-2.5Nb alloy Pressure Tubes in CANDU

Zr-2.5Nb
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D.D. Radford and M.J. Worswick, 

J. Phys. IV France 10 (2000)

D.D. Himbeault, C.K. Chow, and M.P. Puls,

Met. Mat. Trans. A, (1994) 25A 135-145.

CANDU Zr-2.5Nb alloy Pressure Tubes have a very specific texture

created by the manufacturing process
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Hagihara, K., and Nakano, T., JOM, 74 (2022) 1760-1773.

Metals made by Additive Manufacturing (3D printing) typically develop 

strong crystallographic textures

https://giphy.com/explore/laser-sintering

Texture of Additively Manufactured Ti-15Mo-5Zr-3Al alloy (bcc structure)

https://giphy.com/explore/laser-sintering
https://giphy.com/explore/laser-sintering
https://giphy.com/explore/laser-sintering
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Describe the orientation of one grain/crystallite mathematically

The orientation of a crystal, i.e., a 3D object, can be described by the 

same mathematical framework as 3D rotations. Such a description 

needs 3 parameters:

• Euler angles (1, 2, ) – most popular

• Quaternions 
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Describe the orientation of one grain/crystallite mathematically:

Quaternions

• In mathematics, the quaternion number 

system extends the complex numbers.

• Quaternions are used in pure mathematics, but 

also have practical uses in applied mathematics, 

particularly for calculations involving three-

dimensional rotations, such as in three-

dimensional computer graphics, computer vision, 

robotics, magnetic resonance imaging and 

crystallographic texture analysis.

https://en.wikipedia.org/wiki/Quaternion
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Describe the orientation of one grain/crystallite mathematically:

Euler angles (1, 2, )

[010]

[100]

[001]

Crystal

e1=Xsample=RD

e2=Ysample=TD

e3=Zsample=ND

Sample Axes

RD

TD

e”2
e”3

=e”1

2nd position

ycrystal=e2’’’



xcrystal=e1’’’

zcrystal=e3’’’

=

3rd position (final)

e’1

e’2



e’3=

1st position



Prof. B. Diak, MECH 851, 

Queen's University
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Rotation 1 ():  rotate axes (anticlockwise) about 

the (sample) 3 [ND] axis; Z1.

Rotation 2 ():  rotate axes (anticlockwise) about 

the (rotated) 1 axis [100] axis; X.

Rotation 3 ():  rotate axes (anticlockwise) about 

the (crystal) 3 [001] axis; Z2.

Prof. B. Diak, MECH 851, 

Queen's University

Describe the orientation of one grain/crystallite mathematically:

Euler angles (1, 2, )

Bunge notation
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Describe the crystallographic texture of a large population of grains

the Orientation Distribution Function (ODF)

ODF: 

• Assigns to every possible orientation represented by a set of 

Euler angles (1, 2, )  a probability density (e.g., the volume 

fraction of grains with a certain orientation)

• A statistical distribution, which gives volume fraction dV/V of 

crystallites having the orientation g (i.e., (1, 2, )) within the 

orientation element dg:

dV / V = f(g) dg

• The ODF fully/statistically describes the texture of the given 

polycrystal

o If the ODF is known a pole figure for any (hkl) can be derived 

from it
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Describe the crystallographic texture of a large population of grains

the Orientation Distribution Function (ODF)

Identification of some common fcc texture components and fibres in 

Euler space.

Br

Prof. B. Diak, MECH 851, 

Queen's University



Nuclear Materials Research Group • Department of Mechanical and Materials Engineering • Queen’s University, Kingston, Canada

26

Describe the crystallographic texture of a large population of grains

the Orientation Distribution Function (ODF)

AA1050 Cold Rolled 60% ODF [from Delannay et al. (2002)]

Prof. B. Diak, MECH 851, 

Queen's University
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Measuring the Crystallographic Texture experimentally

Measure a sufficient number of pole figures 

experimentally: XRD, Neutron Diffraction, EBSD

Calculate the Orientation Distribution Function (ODF)

One way to approach Texture Measurements:
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Measuring the Crystallographic Texture experimentally

Electron Backscatter Diffraction (EBSD)

Lehto et al., Welding in the World, 66, (2022) 363–377.
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Hagihara, K., and Nakano, T., JOM, 74 (2022) 1760-1773.

Measuring the Crystallographic Texture experimentally

Electron Backscatter Diffraction (EBSD)

https://giphy.com/explore/laser-sintering

Texture of Additively Manufactured Ti-15Mo-5Zr-3Al alloy (bcc structure)

https://giphy.com/explore/laser-sintering
https://giphy.com/explore/laser-sintering
https://giphy.com/explore/laser-sintering
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Measuring the Crystallographic Texture experimentally

X-ray Diffraction (XRD)
Shultz (reflection) method



2 is fixed
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Measuring the Crystallographic Texture experimentally

Neutron Diffraction (ND)

 Transmission method 

used

 Specimen typically 1cm3

 Entire PFs from one 

specimen >> ODF

 Bulk texture measured 

directly
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2D detector

Beam stop

 = 2dsin

= hc

e.g. E=80keV

 = Å

d = Å

  ° 

Measuring the Crystallographic Texture experimentally

High Energy Synchrotron XRD

(no direct measurement of Pole Figures)

• A sample needs to be 

measured in a few rotations 

with patterns having multiple 

Debye-Scherrer rings, to obtain 

the ODF.

• Fast and efficient
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High energy X-ray diffraction: wavelength much shorter than 

atomic spacing

1-ID beamline, APS ANL 
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Example CCD image

Note the effect of 

texture: the 

intensity along the 

Debye-Scherrer 

rings varies
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Measuring the Crystallographic Texture experimentally

Neutron Diffraction (ND)

(no direct measurement of Pole Figures)

HIPPO - High-Pressure-Preferred Orientation instrument at the 

Los Alamos Neutron Science Center (LANSCE)

• Using time-of-flight ND, each 

detector panel records a full, 

individual diffraction pattern

• A sample needs to be 

measured only in 3-4 rotations 

to obtain the ODF.

• Fast and efficient

https://lansce.lanl.gov/facilities/lujan/instruments/hippo/index.php
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Thank you for your attention!
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