

THE RIETVELD REFINEMENT METHOD

R. B. VON DREELE ANL/APS (retired) vondreele@anl.gov

- Some history first
- Extreme examples
- The math
- Worked example

Acknowledgements: DOE/SC

HISTORY – H.M. RIETVELD

Hugo Rietveld; neutron powder diffractometer, Petten, Netherlands Papers: H.M. Rietveld, Acta Cryst. 22, 151-2(1967)

H.M. Rietveld, J. App. Cryst., 2, 65-71 (1969) Multi-parameter, <u>nonlinear LS curve fitting</u>

PLUTO REACTOR AERE HARWELL – 1970'S

PANDA Diffractometer

Fig. 2. A schematic diagram of a neutron powder diffractometer named PANDA which is installed at A.E.R.E. Harwell.

AKC & RBVD experiments: $2\Theta_m$ 92°, λ =1.57&1.61Å, 2-2.5x10⁵ n/scm², scan @50m/deg!

This is where it starts - Alan's Manual

RRL 73/239

Original with my annotations of additions to input file for my 1973 version – Gaussian peak shapes with an (incorrect) peak asymmetry correction

WHAT DID IT RUN ON? CHILTON ICL1906A – AERE HARWELL, UK

256k 24bit words (~ 800kB) **OS: GeorgeIII & George4** Produced ~1MW of heat About as much compute power as an old cell phone **Banbury Rd. Oxford** ICL1906a similar

WHAT DID WE DO WITH IT? – 3 DAY SCANS! LHe TEMPS.

5000

4000

3000

1000

 $Y_0 - Y$

tunos 2000

TiNb₂O₇;A2/m,a=11.89,b=3.80,c=20.37, β =120.2° 603 refl.,1077 data points

o-Ti₂Nb₁₀O₂₉, Amma, a=28.30,b=3.78,c=20.35 843 ref., 1116 data points

R. B. Von Dreele and A. K. Cheetham *Proc. R. Soc. Lond. A* 1974 **338**, 311-326

NB: this stuff could be the next battery material, so you just never know.

HUGO'S PROGRAM FAMILY TREE

A FEW MORE RIETVELD REFINEMENT EXAMPLES – BIGGEST & FASTEST

Biggest: Proteins – polymers of amino acids - representations

 α -helix

Ribbon diagram – botox ~1100AA random coil α -helix β -sheet Schematic – insulin 102 AA in 4 chains 1/3 of shown

Rings – protein pattern (HEWL) – X-rays 30s @ 20kV on MAR345; <1mg HEWL

(Air, solvent & Kapton background subtracted)

Texture free sample & no graininess – 1μm "perfect" powder Resolution limit – 1.85Å Residual solvent scattering – background

(110) Reflection, lowest order for tetragonal lysozyme $2\Theta \sim 0.67$ deg

Beam stop holder
 ~9000 F_{hkl} for HEWL >2Å

Protein powders – "ideal" (1μm & no μstrain)

Initial experiments – various Zn-insulin phases T₆, T₃R₃, etc.

Grind T₃R₃ complex in agate mortar with mother liquor High resolution synchrotron x-ray powder patterns (X3b1/NSLS)

Immediately after grinding Indexed – R3 a=81.275Å, c=73.024Å New phase – T₃R₃DC

After 2 days rest Indexed – R3 a=81.084Å, c=37.537Å same as single xtal X3b1/NSLS in Oct. 1999

High Resolution X-ray Powder Diffraction on Proteins

Zn insulin structure determined from powder diffraction data •R3 unit cell a=81.276Å,c=73.037Å •Indexed from pattern •V=418,000Å³!!

- •>1600 atoms!!
- •Rietveld refinement (GSAS)
- •R_{wp}=3.74%

1st Molecular replacement solution!!3 parameter problem

Schematic of T₃R₃DC Zn-insulin complex.

Powder RT structure PDB=1FUB

Same structure as --Single crystal – Lo T phase PDB=1G7A (Scooped the single crystal result!)

View down 3-fold axis - front T_3R_3 turned 9° wrt back T_3R_3

Von Dreele, R. B., Stephens, P. W., Blessing, R. H. & Smith, G. D. (2000). Acta Cryst. D56, 1549-1553. Smith, G.D., Panghorn, W. & Blessing, R.H. (2001). Acta Cryst. D57, 1091-1100

FASTEST: DATA FROM LASER SHOCK STATION OF DYNAMIC COMPRESSION SECTOR AT APS

2d image from a single <u>100ps</u> micropulse from APS for CeO₂

Strongly asymmetric peaks – resemble neutron TOF peaks. NB: light travels ~3cm in 100ps!

PINK BEAM FUNCTION MATHEMATICS

Follows that of Von Dreele, Jorgenson & Windsor (1985) for TOF peaks

Back-to-back exponentials – peak position at join τ =0

$$E(\tau) = \frac{\alpha\beta}{\alpha+\beta} e^{\alpha\tau} \text{ for } \tau < 0 \qquad E(\tau) = \frac{\alpha\beta}{\alpha+\beta} e^{-\beta\tau} \text{ for } \tau > 0$$

Convolute with Gaussian

$$G(\Delta 2\Theta) = \frac{\alpha\beta}{2(\alpha+\beta)}e^u erfc(y) + e^v erfc(z)$$

where

$$u = \frac{\alpha}{2}(\alpha\sigma^2 + 2\Delta 2\Theta), v = \frac{\beta}{2}(\beta\sigma^2 - 2\Delta 2\Theta), y = \frac{\alpha\sigma^2 + \Delta 2\Theta}{\sqrt{2\sigma^2}} \text{ and } z = \frac{\beta\sigma^2 - 2\Delta 2\Theta}{\sqrt{2\sigma^2}}$$

Convolute with Lorentzian

$$L(\Delta 2\Theta) = \frac{\alpha\beta}{\pi(\alpha+\beta)} \{ Im[e^p E_1(p)] + Im[e^q E_1(q)] \}$$

where

$$p = -\alpha \Delta 2\Theta + \frac{i\alpha \gamma}{2}$$
 and $q = -\beta \Delta 2\Theta + \frac{i\beta \gamma}{2}$

Combine: pseudo-Voigt $P(\Delta 2\Theta) = \eta L(\Delta 2\Theta) + (1 - \eta)G(\Delta 2\Theta)$

PINK BEAM FUNCTION & 1ST RIETVELD REFINEMENT

Assume conventional UVW Gaussian & XY Lorentzian variation with Θ

.: Crystal structures at very high pressures can be refined

RIETVELD REFINEMENT IN GSAS-II

RIETVELD MODEL: $I_{C} = I_{I} \{ \Sigma K_{P} F^{2}{}_{P} M_{P} L_{P} P(\Delta_{P}) + I_{B} \}$

- I_i incident intensity variable for fixed 2 Θ (e.g. neutron TOF)
- **k**_p scale factor for particular phase
- F²_p structure factor for particular reflection
- m_p reflection multiplicity
- L_p correction factors on intensity texture, etc.
- $P(\Delta_p)$ peak shape function size & microstrain, etc.
- Sum over all reflections under a profile point (multiple phases)
- I_b background function

More complex model than for single crystal diffraction

PROFILE FUNCTIONS P(\Delta_P) – BASICS

 $\Delta_{p} = T_{reflection} - T_{profile} (T = 2\Theta \text{ or TOF})$

Gaussian profile - generally instrumental origin

$$G(\Delta T, \Gamma) = \sqrt{\frac{4\ln 2}{\pi\Gamma^2}} \exp\left[\frac{-4\ln 2(\Delta T)^2}{\Gamma^2}\right]$$

Lorentzian profile - largely sample effect

$$L(\Delta T, \gamma) = \frac{2}{\pi \gamma} \frac{1}{1 + \left(\frac{2\Delta T}{\gamma}\right)^2}$$

Voigt – convolution = G \otimes L Pseudo-Voigt – linear combination = η L+(1- η)G η *via* Thompson, Cox & Hastings – pseudoVoigt = Voigt CW Asymmetry from axial divergence – Finger, Cox & Jephcoat NB: in gsas & GSAS-II, T is 2 Θ in centideg or TOF in μ s

SAMPLE BROADENING

Isotropic Crystallite size & µstrain broadening

Small (<1µm) crystals \rightarrow not δ -functions Size distribution \rightarrow superposition of sharp to broad spots \rightarrow Shape ~Lorentzian Width $\Delta d^* = \text{constant} = \Delta d/d^2 = \Delta \Theta \cot \Theta/d$ Bragg's Law: $\Delta 2\Theta = \lambda \Delta d/d^2 \cos \Theta$ (= X/cos Θ) \rightarrow Scherrer equation k=1,p=size $S = \frac{180k\lambda}{\pi p \cos \Theta}$

Unit cell variation (defects??) Lorentzian distribution \rightarrow shape $\Delta d/d = constant = \Delta d^*/d^* = \Delta \Theta cot\Theta$ Or: $\Delta 2\Theta = 2\Delta dtan\Theta/d$ (= Ytan Θ) $M = 180\mu tan \Theta/\pi$ $\mu - \mu strain$ (x10⁶) parameter

CW PROFILE COEFFICENTS

Lorentzian vs Gaussian sample broadening?

- Size: $S = \frac{180k\lambda}{\pi p \cos \Theta}$ µstrain: $M = 180\mu \tan \Theta/\pi$
- Need: S_{Γ} (Gauss) & S_{γ} (Lorentzian) sample broadening (2 slides back)

$$\Gamma_{g}^{2} = 8ln2(Utan^{2}\Theta + Vtan\Theta + W + S_{\Gamma})$$
$$\gamma = \frac{X}{cos\Theta} + Ytan\Theta + Z + S_{\gamma}$$

- Mixing coeff for each; m_s & m_µ (NB: called 'mx' in GSAS-II; range 0-1) $S_{\gamma} = m_s S + m_{\mu} M$ $S_{\Gamma} = [(1 - m_s)^2 S^2 + (1 - m_{\mu})^2 M^2]/8ln2$
- Normally $m_s \& m_\mu = 1$ (all Lorentzian sample broadening) so: $S_\gamma = S + M$ $S_\Gamma = \theta$ (no Gaussian sample broadening)
- X,Y,Z = 0 (no Lorentzian instrument broadening)

CW PROFILE PEAK BROADENING IN GSAS-II

The split of sample broadening from instrumental contribution

Instrument - fixed from calibration

NB: for APS 11BM X,Y & Z = 0

Sample – phase & histogram dependent

TOF PROFILE FUNCTION IN GSAS-II

The best of gsas fxns 1, 3, 4 & 5 combined (2 is not implemented)

TOF PROFILE PEAK BROADENING IN GSAS-II

25

The split of sample broadening from instrumental contribution

Instrument – fixed from calibration

🐺 GSAS-II project: 640-AXU.gpx			• X	
File Data Calculate Import Export Operations Help				
Project: 640-AXU.gpx	.gpx A Histogram Type: PNT Bank: 3			
Notebook	Flight path: 17.453 2-theta: 52.21			
Controls	Name (default)	Value	Refine?	
Covariance Constraints	difC (3376.505):	3374.293		
Restraints	difA (-1.009):	-1.009		
Rigid bodies ⊡ Phases	difB (2.131):	2.131] 🗆	
silicon	Zero (-3.697):	-3.697		
PWDR POLARIS124938.gs	alpha (0.122):	0.122		
Comments	beta-0 (0.034467):	0.034467] 🗆	
Background	beta-1 (0.015018):	0.015018		
Instrument Parameter	beta-q (0.019362):	0.019362		
Peak List	sig-0 (10.496):	10.496		
Index Peak List Unit Cells List	sig-1 (99.229):	99.229		
Reflection Lists	sig-2 (6.984):	6.984] 🗆	
PWDR POLARIS124941.gs PWDR POLARIS124946.gs	sig-q (1.703):	1.703] 🗆	
	X (1.287):	1.287		
PWDR POLARIS124950.gs PWDR POLARIS124938.gs	Y (-0.142):	-0.142		
PWDR POLARIS124941.gs ↓	Z (0.000):	0.0		
Mouse RB drag/drop to reorder NB: Azimuth is used for polarization on			nly:	

Sample – phase & histogram dependent Independent of experiment (e.g. CW or TOF)

GSAS-II project: 640-AXU.gpx	
File Data Calculate Import E	xport Select tab Edit Phase Help
Project: 640-AXU.gpx	General Data Atoms Draw Options Draw Atoms RB Models Map pe A
Notebook	Histogram data for alumina:
Controls	PWDR POLARIS124938.gsas Bank 3 A Select plot type:
Covariance	PWDR POLARIS124941.gsas Bank 3
Constraints	PWDR POLARIS124946.gsas Bank 3
Restraints	PWDR POLARIS124947.gsas Bank 3 O Mustrain
Rigid bodies	PWDR POLARIS 124900.gsas Bank 3 O Size
🚊 - Phases	PWDR POLARIS124930.gsas Bank 4
silicon	PWDR POLARIS124946.gsas Bank 4
alumina	PWDR POLARIS124947.gsas Bank 4
PWDR POLARIS124938.gs	PWDR POLARIS124950.gsas Bank 4 V C Eq. area Inv. pole figure
Comments	
Limits	Ose Histogram: PWDK POLAKIS124956.gsas Bank 5 ? Do new Lebali extraction:
Background	In sequential refinement, fix these in alumina for this histogram:
Instrument Parameter	Phase fraction: 0.2705 Wt. fraction: 0.502
Peak List	Domain size model: isotropic V LGmix 1.0000 Reset?
- Index Peak List	Size(um): 0.746
Reflection Lists	Mustrain model: isotropic v LGmix 1.0000 Reset?
PWDR POLARIS124941.as	A microstraine 314.7
PWDR POLARIS124946.as	
PWDR POLARIS124947.gs	Hydrostatic/elastic strain:
PWDR POLARIS124950.gs	D11 0 D33 0
PWDR POLARIS124938.gs	Preferred erioptation model Meast Dellars
PWDR POLARIS124941.gs	Prefered orientation model March-Dollase
PWDR POLARIS124946.gs	March-Dollase ratio: 1.0 Unique axis, H K L: 0 0 1
PWDR POLARIS124947.gs	
PWDR POLARIS124950.gs	L Extinction: U.U
PWDR POLARIS124938.gs V	Babinet A: 0.0 Babinet U: 0.0
< >	
Mouse RB drag/drop to reorder	
0 5545 4 biots 640 AVU.que	
Powder Patterns Peak Wickins Mustrale	
µstrain for alumir isotropic model	aa laada ahaa ahaa ahaa ahaa ahaa ahaa a
	150
	Samla
	Jampie.
	640f & 676b
	150
ATT	100
-150	
-100 -50	-50_10 ²¹
X. Justrain 50 100	
150	Argonne (
🐐 🗲 🔶 🕂 Q 🖺 🔯 🚄 < > A	

INTENSITY EXTRACTION

Structure factors from powder patterns? → structure solution

Apportion I₀ by ratios of Ic(H) for contributing reflections → Sum over all under peak profile Correct for multiplicity & Lp, etc. Result is F²(H)

Here 4 reflections contribute

LeBail algorithm – extracted $F_{o}^{2} \rightarrow \text{new } F_{c}^{2}$ then next cycle; refine only background, peak shapes & positions – few parameters No constraints needed for overlaps – Simple

Pawley refinement – F²_o are parameters + background, peak shapes & positions – many parameters Constraints & restraints required for overlaps - Complex

RIETVELD REFINEMENT – A SIMPLE EXAMPLE

AN EXAMPLE: FLUROAPATITE

Add atoms & do default initial refinement – scale & background

Notice shape of difference curve – position/shape/intensity errors

Argonne

ERRORS & PARAMETERS?

- position lattice parameters, zero point (not common)
 - other systematic effects sample shift/offset
- shape profile coefficients sample size/µstrain

(U, V, W, X, Y, etc. in GSAS-II are instrument parms.)

- intensity crystal structure (atom positions & thermal parameters)
 - other systematic effects (absorption/extinction/preferred orientation)

NB – get linear combination of all the above NB^2 – trend with 2 Θ (or TOF) important

DIFFERENCE CURVE – WHAT TO DO NEXT?

- Dominant error peak positions? peak shapes too sharp?
- Refine sample µstrain parameter next & include lattice parameters

NB - EACH CASE IS DIFFERENT – no magic recipe

RESULT – MUCH IMPROVED!

maybe intensity differences remain

- refine coordinates & thermal parms.

RESULT – ESSENTIALLY UNCHANGED

Thus, major error in the initial model –

peak shapes & sample displacement/lattice parameters

A USEFUL PLOT – COVARIANCE MATRIX

Green: cov>0 Red: cov<0 Yellow: cov~0 Cursor reports: Cov or value(esd) on diagonal Can be zoomed!

Beware white bands & nan: Singularities!

THANK YOU

