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CONSTRAINTS & RESTRAINTS



CONSTRAINTS & RESTRAINTS - “WHAT TO DO 
WHEN YOU HAVE TOO MANY PARAMETERS & 
NOT ENOUGH DATA”
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j

kjlkil

i p

F
SUR

v

F




=





Rigid body User Symmetry

Derivative vector

Before constraints
Derivative vector

After constraints

Rectangular matrices

txyz

Qijk

y

c1

c2



QUATERNIONS – SIR WILLIAM ROWAN 
HAMILTON 1843
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Broome Bridge, Dublin

Here as he walked by 

on the 16th of October 1843

Sir William Rowan Hamilton

in a flash of genius discovered

the fundamental formula for

quaternion multiplication

i² = j² = k² = ijk = −1

& cut it on a stone of this bridge.
NB: W.R. Hamilton is the 

H in HY = EY 

"Quaternions came from Hamilton after his 

really good work had been done; and, though 

beautifully ingenious, have been an unmixed 

evil to those who have touched them in any 

way, including Clerk Maxwell." — Lord Kelvin, 

1892.

https://en.wikipedia.org/wiki/James_Clerk_Maxwell
https://en.wikipedia.org/wiki/Lord_Kelvin


QIJK – QUATERNION TO REPRESENT 
ROTATIONS IN GSAS-II
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• In GSAS-II defined as:  Qijk = r+ai+bj+ck – 4D complex 

number – 1 real + 3 imaginary components

• Normalization: r2+a2+b2+c2 = 1

• Rotation vector: v = ax+by+cz; u = (ax+by+cz)/sin(a/2)

• Rotation angle: r2 = cos2(a/2); a2+b2+c2 = sin2(a/2)

• Quaternion product: Qab = Qa * Qb ≠ Qb * Qa

• Quaternion vector transformation: v’ = QvQ-1

• Uses: RB rotations, structure drawings, etc.

• No gimbel lock as with Eulerian angles @ c = 0



FULL MINIMIZATION FUNCTION  
 + RESTRAINTS: ADDITIONAL “DATA” 
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 Powder profile (Rietveld)/Single crystal Fhkl

Bond angles

Bond distances

Torsion angle pseudopotentials

Plane RMS displacements

van der Waals distances (if voi<vci)

Hydrogen bonds

Chiral volumes

“f/y” pseudopotential

NB: May be 1,000’s of these terms for e.g. proteins

Least-squares – nonlinear; transcendental functions



RMCPROFILE IN GSAS-II



RMCPROFILE “BIG BOX” SIMULATION

▪ Provide GUI interface to setup of 

RMCProfile - save setup controls for reuse

▪ Initiate independent RMCProfile execution 

– may run for hours

▪ Allow graphical display on intermediate 

results

GSAS-II interface development goals
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RMCPROFILE RESULT FOR SF6
10x10x10 unit cell box – transform back to original
See disordered atom distribution 
  – compare to Rietveld Uaniso for F atom
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PDFFIT & ISODISTORT



ISODISTORT

▪ To use: a multistep process → 

a cif file with modes; can be imported 

into GSAS-II with new variables 

for the modes. 

▪ New implementation – direct interaction 

between GSAS-II & ISODISTORT; 

simplified operation 

Implementation in GSAS-II

11

ISODISTORT: Web based tool for discerning mode displacements of atoms 

from an idealized parent structure



PDFFIT2 = “PDFfit” IN GSAS-II
“Small Box” modelling of pair distribution functions
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Use ISODISTORT – create the atom position constraints in new interface to PDFfit2

Parameters: mode 

displacements (Å)

Can be fit for 

sequence of T



INCOMMENSURATE STRUCTURES IN GSAS-II



INCOMMENSURATE STRUCTURES N GSAS-II
Book: “Incommensurate Crystallography” S. van Smaalen
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Na2CO3 – single crystal X-ray data – h0l zone → rows of spots don’t line up

H=G+mq

G: substructure hkl

m: +/- small integers

q: modulation vector

For Na2CO3

q= 0.183,0,.319

Each reflection: hklm

m=0 sublattice

m≠0 superlattice



POWDER DIFFRACTION
Na2CO3 – 11BM @ APS room temp.
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Includes m=-2,-1,1,2 superlattice reflections; Rietveld refinement 

includes 1st & 2nd order harmonics on position depending on atom



INCOMMENSURATE STRUCTURE SOLUTION
4D charge flipping; single crystal & powders (e.g. Pawley refinement)
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Modulation of atom positions (Na1-y)

Fit function – fourier series in tau



LATTICE MODULATION 
Na2CO3 – single crystal data
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Coordinated wave motion – Na lattice y motion/ CO3 rocking motion

Recall q= 0.183,0,319 so period ~6-7 on x & ~3 on z

Possible modulations: positions, thermal parameters, site fractions 

(& magnetic moments)

c

a



INCOMMENSURATE STRUCTURES

▪ Space group + super symmetry symbol

e.g. Na2CO3 – C2/m(α0γ)os

Symmetry symbols – interpreted by GSAS-II (not lookup)
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Space group

Modulation vector
Translation component

Operators: conventional space group & 4th dim component 

Possible modulation vectors:

e.g. abg, a0g, 0b0, a½g, ½b0

Translations: 0,s,t,q,h

1-4 of these

Depend on space group

GSAS-II shows legal choices



MODULATION MODELS

▪ Position: on x,y,z 

– Fourier series sin & cos– symmetry allowed choices

– Zigzag, sawtooth & block – just 1, add Fourier for more terms

▪ Thermal motion:

– Fourier series

▪ Site fraction:

– Fourier series

– Crenel – like block but 0/1 (not +/- x)

▪ Magnetic moment

– Fourier (odd terms only – generally just 1)

Position, thermal motion, site fraction & magnetic moment

19



INCOMMENSURATE STRUCTURES

▪ 3+2 & 3+3 not allowed in GSAS-II

– Too complex to deal with easily 

– 3-D 230 SG

– For 3+1: 4,783 possible SG

– For 3+2: 222,018 possible SG

– For 3+3: 28,927,922 possible SG

– But only a handful found – not worth the hassle

▪ Ad hoc centering not allowed

– ‘X’ space groups – all have equivalent legal ones with transformation

▪ Other odd cases found in cif files not allowed

– e.g. R-centered monoclinic

Cases not allowed in GSAS-II
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MAGNETIC INCOMMENSURATE STRUCTURES
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Some examples:

β-Li2IrO3

DyMn6Ge6 – residual moment

CeRuSn – Ce moment

CeRuSn – 

 structure modulation



CURRENT STATUS

▪ Incommensurate magnetic structures

– Structure factor & derivatives math & refinement

– Site symmetry rules for allowed Fourier coefficients

▪ Incommensurate structures

– Certain high symmetry site symmetry rules (in tetragonal, trigonal & 

hexagonal)

– Refinement of non Fourier functions (derivative issues)

– Cif file output?

▪ Magnetic structures

– Structure solving aids i.e. selection of magnetic cell & space group from 

observed data

– Output mcif files TBD

– 1st tutorial now available – Simple Magnetic Structures

GSAS-II & incommensurate/magnetic structures – still to be done!
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CHARGE FLIPPING



CHARGE FLIPPING
The algorithm set up: 
 ~1Å unique reflections → sphere → box → 0.5Å box
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Origin @ F000

New origin
“CEhkl”



CHARGE FLIPPING
The Algorithm
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Random

phases

FFT

Charge Flip

IFFT

Apply Phases to core

& Compute residual

CEhkl



CHARGE FLIPPING – 3D & 4D

CErho = np.real(fft.fftn(fft.fftshift(CEhkl)))*(1.+0j)     #fft Fhkl → r(xyz)

CEsig = np.std(CErho)                        #get s(r)

CFrho = np.where(np.real(CErho) >= flipData['k-factor']*CEsig,CErho,-CErho)   #CF r → r’

CFrho = np.where(np.real(CErho) <= flipData['k-Max']*CEsig,CFrho,-CFrho)      #U atom CF!

CFhkl = fft.ifftshift(fft.ifftn(CFrho))               #fft r’(xyz) → F’(hkl)

CFhkl = np.where(CFhkl,CFhkl,1.0)                #avoid divide by zero

phase = CFhkl/np.absolute(CFhkl)               #get f(hkl) from F’

CEhkl = np.absolute(CEhkl)*phase               #apply f  to F

Ncyc += 1                                 #count tries

sumCF = np.sum(ma.array(np.absolute(CFhkl),mask=Emask))                     #S F

DEhkl = np.absolute(np.absolute(Ehkl)/sumE-np.absolute(CFhkl)/sumCF)     #S |DF|

Rcf = min(100.,np.sum(ma.array(DEhkl,mask=Emask)*100.))                     #residual

After user break:

Repeat 1st line to get result map

Find origin; search for peaks & display result 

Python loop – all double precision; start random phases for CEhkl
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EXAMPLE – SUCROSE POWDER

11BM @ APS - 1st steps – peak fitting/indexing/Pawley refinement
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781 unique hkl’s

CF with 61440



CHARGE FLIPPING SOLUTION
Residual  ~45% → ~17% & 46 peaks in cell (NB: sucrose C12H22O11)
Map peaks – unique set & select – identify atoms – make molecule
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CHARGE FLIPPING – PHASES?

Track phases of 5 reflections – 10000 CF cycles
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Not solved in 10000 cycles

Solved at cycle ~4500

Solved at cycle ~230



CHARGE FLIPPING – CHAOS MATHEMATICS?

▪ Cyclic algorithm – successive iteration – stable solution (apparently?) 

▪ Chaotic phase behavior – but deterministic (Butterfly effect?)

▪ Hyper dimensionality ~7680-D for sucrose example (NB: no symmetry used)

▪ Infinite phase possibilities >> Infinite phase sets for recognizable atoms (Cantor 

dust?)

▪ Phase oscillation & drift – “sympletic” or “non-sympletic” strange attractors?

▪ Is there a “basin of attraction”? 

▪ Does this really matter?  

(picture from “Strange Attractors: Creating Patterns in Chaos” by J. C. Sprott)

Strange attractors? Cantor dust? Butterfly effect? Basin of 
attraction?
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y=f(x)          f(x) - polynomial

x = y

x

y



THANK YOU
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