Canadian Light Source XRD Summer School August 16 – 18, 2022

Thin Film Characterization with X-Rays

beatriz.moreno@lightsource.ca

TOPICS

1. Motivation

- 2. Is the film thin?
- 3. X-ray Attenuation

Techniques:

a) GI-powder XRD

b) GI-single crystal XRD

c) Reflectivity

d) GISAXS

Motivation

Three Most Common Issues Coatings Address:

Friction
 Heat
 Corrosion

WATER

SMUDGES

SCRATCHES

REFLECTIONS

IS [

DUST

Stress fracture patterns in ALD W/Si

What can we measure?

Small angle x-ray reflectivity

GI-SAXS

GI-WAXS -- GI – PXRD -- GI -- RSM

Reflectivity XRD Pole figures

They yield information about:
✓ Film thickness, roughness, porosity
✓ Structure, stress, texture, defects
✓ Composition, interdiffusion, gradients
✓ Buried nanostructures, size, shape, ordering

What kind of films can we measure?

Single-crystal

Amorphous

Canadian Centre canadien Light de rayonnement Source synchrotron Poly-crystalline

Nanostructures

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

Using X-Rays to investigate thin films

The grazing incidence geometry enhances the film signal relative to the substrate signal

The **attenuation length** ε is the distance over which the x-ray beam intensity has dropped to 1/e of its incident intensity.

Denser materials will have shorter attenuation lengths.

Higher energies will have longer attenuation lengths

The **attenuation coefficient** μ is simply the inverse of the attenuation length

Where to find attenuation lengths of materials:

- CXRO
- XOP/XPOWER

e = 2.718281828459045 1/e = 0.367879441171

 $I = I_o \ e^{-\frac{d}{\varepsilon}}$

 $I = I_o \ e^{-\mu . d}$

d

X-Ray Database	Ð
Nanomagnetism	Ø
X-Ray Microscopy	Ø
EUV Lithography	Ø
EUV Mask Imaging	Ø
Reflectometry	Ø
Zoneplate Lenses	e
Coherent Optics	C
Nanofabrication	Ø
Optical Coatings	Ø
Engineering	e
Education	e
Publications	e
Contact	Ø

The Center for X-Ray Optics is a multi-disciplined research group within Lawrence Berkeley National Laboratory's (LBNL) Materials Sciences Division (MSD). Notice to users

X-Ray attenuation length

X-Ray Interactions With Matter

Introduction

Access the atomic scattering factor files. Look up x-ray properties of the elements. The index of refraction for a compound material. The x-ray attenuation length of a solid. X-ray transmission Of a solid. Of a gas. X-ray reflectivity Of a thick mirror. Of a single layer. Of a bilayer. Of a multilayer. The diffraction efficiency of a transmission grating.

Related calculations:

Synchrotron bend magnet radiation.

Other x-ray web resources. X-ray Data Booklet

htsource.ca

X-Ray Attenuation Length

- Choose from a list of common materials: Enter Formula
- Chemical Formula: Cu
- Density: -1 gm/cm^3 (enter negative value to use tabulated values.)
- Scan Photon Energy (eV) ✓ from 5000 to 10000 in 100 steps (< 500).
 (NOTE: Energies must be in the range 30 eV < E < 30,000 eV, Wavelength between 0.041 nm < Wavelength < 41
- At fixed Angle (deg) = 90

To request a Log V Plot V press this button: Submit Request

To reset to default values, press this button: Reset

ength < 41

 10^{4}

THE CENTER FOR X-RAY OPTICS X-Ray Database X-Ray Attenuation Length: data file here Zone Plate Education X-Ray Atten Print Cu Density=8.96, Angle=90.deg Cu Density=8.96, Angle=90.deg Photon Energy (eV), Atten Length (microns) E 5000.00 5.96392 5034.78 6.07762 5069.80 6.19352 (microns) 5105.06 6.31168 20 6.43210 5140.57 5176.32 6.55489 e 5212.33 6.68003 Length 5248.58 6.80778 5285.09 6.93802 5321.85 7.07069 Atten 1 5 5358.87 7.20583 ıtt 5396.14 7.34361 5433.67 7.48427 7.62763 5471.47 Se 5509.53 7.77389 5547.85 7.92298 5000 5586.44 8.07487 Photon Energy (eV) 5625.29 8.22963 5664.42 8.38748 5703.82 8.54873 5743.49 8.71308 Element 29: Cu THE BRIGHTEST LIGHT IN CANADA | lightsource.ca 5783.44 8.88042 5823.67 9.05096 Edge keV 5864.17 9.22514 κ 8.9789

XOP/XPOWER

https://www.aps.anl.gov/Science/Scientific-Software/XOP

How do we measure?

Sample alignment

applied to

Polycrystalline films

Canadian Centre canadien Light de rayonnement Source synchrotron

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

Regular specular geometry, $\omega = \theta$

Grazing incidence geometry

https://www.sciencedirect.com/science/article/pii/S0022311517313946

Refraction correction

 $\Delta 2\theta = \delta [\cot \alpha + \cot(2\theta - \alpha) + 2 \tan \theta]$

Powder Diffraction 24(S1): S11-S15, 2012

Canadian Centre canadien Light de rayonnement Source synchrotron

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

Depth sensitivity

Journal of Nuclear Materials 502: 68-75, 2018.

Uranium Oxide (UO₂) exposed to air

Journal of Nuclear Materials 502: 68-75, 2018.

Structure and electrocatalysis of sputtered RuPt thin-film electrodes

130 Å thick

Grazing incidence x-ray diffraction

.iaht de ravonnement Source synchrotron

J. Phys. Chem. B 109, 12845, 2005. Kim et al.

applied to

Single crystal films

Canadian Centre canadien ight de rayonnement Source synchrotron

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

GID setup

Canadian Centre canadien Light de rayonnement Source synchrotron

lightsource.ca

GID setup

Canadian Centre canadien Light de rayonnement Source synchrotron

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

Journal of Crystal Growth 386(0): 139-145, 2014

Journal of Crystal Growth 386(0): 139-145, 2014

Jrce.ca

Journal of Crystal Growth 386(0): 139-145, 2014

Single crystal films Polycrystalline films Amorphous films

anadian Centre canadien ight de rayonnement ource synchrotron

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

- Reflectivity yields information about the
 - Thicknesses
 - Density / porosity
 - Roughness of the interfaces

- Other names:
 - > X-ray specular reflectivity
 - X-ray reflectometry
 - > XRR

No diffraction!

The Rigaku Journal, 26(2), 2010

Canadian Centre canadien Light de rayonnement Source synchrotron

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

Snell's law $n_1 \cos \vartheta_1 = n_2 \cos \vartheta_2$ $n = 1 - \delta + i \beta$

Canadian Centre canadien Light de rayonnement Source synchrotron

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

Reflectivity of a chromium film on top of silicon substrate, Cr/Si, for different thicknesses between 5 and 300 Å.

Kiessig fringes

Reflectivity $2\Delta\theta_r$ 10⁸ 10³ n₁ = 28 10-2 11 11 v2 11 N3 11 11 11 11 0.0 0.5 Canadian Centre canadien Liaht de ravonnement 1.54 Angstrom Source synchrotron $= 0.4 \ \mu m$ 2.0.01.deg

100 Angstrom chromium layer

Surface roughness

Programs for simulating and fitting reflectivity

- GSAS II !
- Parratt 32
- RFit2000
- WinGixa (Panalytical)
- XOP / IMD

For more x-ray related softwares consult website: http://gisaxs.com/index.php/Software#Crystallography

IMD/XOP to simulate x-ray reflectivity

🗶 Х	OP 2.4			-		×		3.20	
Хор	Source	Optics	Tools	Help			· · · · · · · · · · · · · · · · · · ·		
Logo	Tree	PT	Cmd	CD			🐼 IMD Lau 🗆 🗙		
			warman and a	ā.			File Help		
			2				IMD IMD*Multiplot IMD*Efficiency		
			40		IMD				o x
		160	1.5	File	Calcu	late P	lot Materials/Optical Constants Help		
1	W /	A STREET	1521.3	ST	RUCTUR	E 1 lay	er - Cr on Si		
	Y-	A	à		bient: Va laver (1).	cuum z=5.00 A			
1	77	A		Si	substrate		•		
	1.7								
1									
1									
7					- =	1)	< X B B • • G H Z C •	1.2	
X	op			D	ependent	Variable	s Independent Variables Coupled Parameters Fitting Optimization		
					Specular	Optical H	unctions/Fields Non-Specular Reflected Intensity	1	
					Refl	ectance.	, Phase, Psi, Delta 🗌 Transmittance, Phase 🗌 Absorptance		
-	-	Contraction of	-			r 1	□ Ileer 2 □ Ileer 3		
12200	Terrar				Field	S			
					ned M	agained	Data Namaanud data		
				Im	port	easured	Data ivo measured data.		
50				Im	pon O	pumizatio	on raiger nome no optimization targer prome.		

https://www.aps.anl.gov/Science/Scientific-Software/XOP

Canadian Centre canadien Light de rayonnement Source synchrotron http://www.rxollc.com/idl/IMD.pdf

IMD/XOP to simulate x-ray reflectivity

🐼 XOP 2.4 —	
Xop Source Optics Tools He	lp
Logo Tree PT Cmd CD	IMD Lau
	File Help IMD IMD*Multiplot IMD*Efficiency
	🗑 IMD – 🗆 🗙
	File Calculate Plot Materials/Optical Constants Help Select independent variables to edit or remove. STRUCTURE 1 layer - Cr on Si ambient: Vacuum Cr layer (1), z=5.00 Å Si substrate Si substrate Image: Strate Imag
	Dependent Variables Independent Variables Coupled Parameters Fitting Optimization Grazing Incidence Angle, Theta [1000 values: 0.050-3.000 deg] Wavelength, Lambda [1.540 Å]
	Import Measured Data No measured data. Import Optimization Target Profile No optimization target profile.

IMD/XOP to simulate x-ray reflectivity

Grazing incidence

Small angle X-ray scattering

GISAXS

Canadian Centre canadien Light de rayonnement Source synchrotron

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

GISAXS measurements

Surface Science Reports 64(8): 255-380, 2009.

GISAXS

Modelling software

- R. Lazzari, IsGISAXS: A program for grazing-incidence small-angle X-ray scattering analysis of supported islands, J. Appl. Crystallogr. 35 (2002) 406– 421.
- <u>http://www.insp.jussieu.fr/oxydes/IsGISAXS/isgisaxs.htm</u>
- Jiang, Z. (2015). "GIXSGUI: a MATLAB toolbox for grazing-incidence Xray scattering data visualization and reduction, and indexing of buried three-dimensional periodic nanostructured films." <u>Journal of Applied</u> <u>Crystallography 48(3): 917-926.</u>
- <u>https://www.aps.anl.gov/Science/Scientific-Software/GIXSGUI</u>
- FitGISAXS, BornAgain, HipGISAXS, NANOCELL, SimDiffraction,...

IsGISAXS

Pd islands on MgO(100)

Decoupling Approximation (DA)

Local Monodisperse Approximation (LMA)

Canadian Centre canadien Light de rayonnement Source synchrotron

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

http://www.insp.jussieu.fr/oxydes/IsGISAXS/isgisaxs.htm#Introduction

GISAXS

Spherical gold nanoparticles in silicon

Canadian Centre canadien Light de rayonnement Source synchrotron

Journal of Applied Crystallography 48(3): 917-926, 2015

In Situ GISAXS Gold film growth on conducting polymer

Table 1. Morphological Parameters Extracted from Simulation of the Data by Use of a Model Consisting of Parallelepiped and Spheroid Particle Geometries To Describe the Cluster Shape^a

	<i>ω</i> (nm)	D (nm)	h _s (nm)	$\sigma_{\rm s}$ (nm)	r _s (nm)	h _p (nm)	$\sigma_{ m p}$ (nm)	r _p (nm)	d (nm)	<i>d</i> ₀ (nm)	t (min)
	3.8	11.8	4.3	11.0	4.8	3.6	20.0	4.8	2.5	3.9	9
	7.2	19.0	6.8	5.3	9.1	6.1	22.5	9.1	5.6	8.2	19
	10.2	27.0	9.9	14.9	13.5	8.8	17.6	13.5	8.8	12.5	29
	15.2	40.0	16.4	18.0	20.0	15.2	36.0	20.0	15.1	21.1	49
tsoı	light	NADA	IN CA	LIGHT	HTEST	E BRIG	ТН				

Canadian Centre canadien Light de rayonnement Source synchrotron

CS Applied Materials & Interfaces 1(2): 353-360, 2009

Thin film characterization at the Brockhouse sector

Beamlines energy range

Lower energy wiggler beamline: 7 – 22 keV Undulator beamline: 5 – 24 keV Higher Energy wiggler beamline: 20 – 95 keV

Thin film characterization at the Brockhouse sector

Thin film characterization at the Brockhouse sector

IBM in-situ station

XRD

RTA up to 1000 °C

H₂ or N₂ ultrahigh purity atmosphere

Resistance probe

Roughness probe

100 200 300 400 500 600 700 800 Temperature [°C] THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

BXDS – Brockhouse X-ray Diffraction and Scattering for materials science

brockhouse.lightsource.ca

Brockhouse Diffraction Sector Beamlines

Home Beamlines - User Guide - Contact Us - CPDW13

Welcome to the Brockhouse homepage. We provide a wide range of complementary diffraction and scattering techniques to fully characterize your materials.

High resolution powder diffraction

Pair distribution function (PDF)

High energy diffraction for in-situ studies

Reciprocal space mapping

Small/wide angle X-ray scattering (SAXS/WAXS)

High pressure crystallography

X-ray reflectivity

Grazing incidence diffraction (GID)

Anomalous diffraction and magnetic diffraction

Conclusions

If you have a sample... \rightarrow measure XRD!

If it is a very thin film... \rightarrow try one of the techniques with grazing incidence geometry

They yield information about:

- ✓ Structure / texture / stress
- ✓ Defects
- ✓ Thickness
- ✓ Roughness
- ✓ Composition, interdiffusion, gradients
- ✓ Size, morphology, ordering
- ✓ How does it perform under real working conditions?
 →Come to a synchrotron and perform in-situ experiments!

Further reading

- Thin Film Analysis by X-Ray Scattering, by Mario Birkholz, 2006
- Surface Science Techniques
 - Chapter 6: Grazing incidence X-Ray diffraction by Osami Sakata and Masashi Nakamura
 - Chapter 7: X-Ray Reflectivity by Gibaud, Chebil and Beuvier
- Renaud, G., et al. (2009). "Probing surface and interface morphology with Grazing Incidence Small Angle X-Ray Scattering." <u>Surface Science Reports</u> 64(8): <u>255-380</u>

Acknowledgments

Canadian Centre canadien Light de rayonnement Source synchrotron CANADA FOUNDATION FOR INNOVATION FOR INNOVATION

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca