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HISTORY – H.M. RIETVELD
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Hugo Rietveld; neutron powder diffractometer, 
Petten, Netherlands
Papers: H.M. Rietveld, Acta Cryst. 22, 151-
2(1967)
H.M. Rietveld, J. App. Cryst., 2, 65-71 (1969)
Multi-parameter, nonlinear LS curve fitting

Exact overlaps 
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Residuals:

Rietveld Minimize 
 −= 2)( coR IIwM

Ic

c2 = MR/(n-p)

“chi-squared” or
“goodness-of-fit”



LINEAR LEAST SQUARES THEORY
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and a function

then the best estimate of the values pi is found by 
minimizing

This is done by setting the derivative to zero

Results in n “normal” equations (one for each variable) -
solve for pi
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NON-LINEAR LEAST SQUARES THEORY

4

Problem - I(pi) is nonlinear & transcendental (sin, cos, etc.)

so can’t solve directly

Expand I(pi) as Taylor series & toss high order terms
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ai - initial values of pi

pi = pi - ai (shift)
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Outer sum over observations

Solve for pi - shifts of parameters, NOT values 

Normal equations - one for each pi



LEAST SQUARES THEORY - CONTINUED
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Rearrange
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Matrix form:   Ax=v
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Solve:   x = A-1v = Bv;  B = A-1 This gives set of Δpi to apply 

to “old” set of ai; repeat until pi small.



GSAS-II ALGORITHM

GSAS – process point-by-point to make  
Ic (value) & Ic/pi (vector)

Hessian matrix - A

/pi
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Sw[Ic/pi]·[Ic/pj]
GSAS-II – process reflection-by-reflection 
to make Ic (vector) & Ic/pi (Jacobian
matrix)

2 or TOF
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NB: GSAS-II – needs large memory! 

Jacobian matrix - J wJTJ = A

Hessian matrix - A



REFINEMENT VIA MODIFIED 
LEVENBERG/MARQUARDT-SVD ALGORITHM
Steps:

1. Compute 

2. Normalize 

3. compute c2(p)

4. Select l (=0.001, “damping factor”)

5. Modify

6. Make SVD inversion of A”

7. Solve  for dp (unnormalized!) & compute c2(p+dp)

8. If c2(p+dp) > c2(p) then l*10 go to 5

9. Else  apply dp to p & go to 1 (new cycle)

10.Quit when c2(p) - c2(p+dp) / c2(p) < 0.0001

SLOW step

FAST steps

NB: all in ~40 lines of python; all double precision
NB2: this thing is exceedingly robust – no user damping factors needed



SVD – SINGULAR VALUE DECOMPOSITION
Singularities & near singularities – see Mathematical Recipes 2.9
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LS matrix: solve for x Ax=b   by  x=A-1b; x are the parameter shifts

SVD: replace A = UwV where U & V are such that U-1 = UT & V-1 = VT

& w – diagonal matrix; all same size as A

Then: A-1 = V(1/wii)U
T

The trick: what to do if wii ~ 0? (singularity) → make 1/wii = 0! (instead of ꝏ)

Then: x = V(1/wii)U
Tb does away with ill-conditioned terms

Have to choose tolerance on wii ~0 (typically 10-6 but 10-3 for proteins works well)

SVD is in python library as numpy.linalg.svd

& uses LAPACK _gesdd routine (fortran – code in MR 2.9)

NB: all double precision in python; downside is wii not 1:1 to parameters so id of 
failures difficult.



LEAST SQUARES ALGORITHMS IN GSAS-II

Useful choices – found in Controls
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Analytic Hessian – default Levenberg-Marquardt SVD from Hessian & computed derivatives
Downside: hard singularities hard to find → “linear algebra errors” cause failures

Analytic Jacobian – uses Jacobian matrix (not Hessian) no SVD; identifies singularities &
Removes them from LS refinement; always runs to convergence

Hessian SVD – no Levenberg-Marquardt (might be better for single crystal data)
Same downside as Analytic Hessian

Numeric – no derivatives & slow – mostly for testing purposes.



LEAST SQUARES THEORY - CONTINUED
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Error estimates (mostly from W.C. Hamilton)

Given observations n > m parameters

with distributions that have finite 2nd moments 

(no need to be “normal” although usually are for powders)

Then LS gives parameter estimates (shifts in our case) 

with the minimum variance in any linear combination

The error estimates (“esd’s”) are
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bii - diagonal elements of the inverted A matrix

Note: There is little justification for additional scaling of 

the i NB: systematic errors will bias results 

beyond i.



RIETVELD MODEL: IC = II{SKPF2
PMPLPP(P) + IB} 
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Ii - incident intensity - variable for fixed 2 (e.g. neutron TOF)

kp - scale factor for particular phase

F2
p - structure factor for particular reflection

mp - reflection multiplicity

Lp - correction factors on intensity - texture, etc.

P(p) - peak shape function - size & microstrain, etc.

Sum over all reflections under a profile point (multiple 

phases)

Ib – background function

More complex model than for single crystal diffraction



PROFILE FUNCTIONS P(P) – BASICS 
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Gaussian profile - generally instrumental origin

Lorentzian profile - largely sample effect
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p = Treflection-Tprofile (T = 2 or TOF)
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Voigt – convolution = G  L 
Pseudo-Voigt – linear combination = hL+(1-h)G
h via Thompson, Cox & Hastings – pseudoVoigt = Voigt
CW Asymmetry from axial divergence – Finger, Cox & Jephcoat
NB: in gsas & GSAS-II, T is 2 in centideg or TOF in ms



Small (<1mm) crystals → not d-functions
Size distribution →

superposition of sharp to broad spots
→ Shape ~Lorentzian

Width d* = constant = d/d2 = cot/d

Bragg’s Law: 2 = ld/d2cos (= X/cos)

→Scherrer equation

k=1,p = size

a*

b*

𝑆 =
180𝑘𝜆

𝜋𝑝 cos 𝛩

Isotropic Crystallite size & mstrain broadening

SAMPLE BROADENING

a*

b*

Size

mstrain
Unit cell variation (defects??)

Lorentzian distribution → shape

d/d = constant = d*/d*=cot

Or: 2 = 2dtan/d (= Ytan)

m – mstrain (x106) parameter

𝑀 = 180𝜇 tanΘ/𝜋



CW PROFILE COEFFICENTS

▪ Size: mstrain:   

▪ Need: S (Gauss) & S (Lorentzian) sample broadening (2 slides back)

▪ Mixing coeff for each; ms & mm (NB: called ‘mx’ in GSAS-II; range 0-1) 

▪ Normally ms & mm = 1 (all Lorentzian sample broadening) so:

S = S + M

S = 0 (no Gaussian sample broadening)

▪ X,Y,Z = 0 (no Lorentzian instrument broadening)

Lorentzian vs Gaussian sample broadening?

14

𝑆 =
180𝑘𝜆

𝜋𝑝 cos 𝛩
𝑀 = 180𝜇 tanΘ/𝜋

𝑔
2

= 8𝑙𝑛2(𝑈𝑡𝑎𝑛2Θ + 𝑉𝑡𝑎𝑛Θ +𝑊 + 𝑆Γ)

𝛾 =
𝑋

𝑐𝑜𝑠Θ
+ 𝑌𝑡𝑎𝑛Θ + 𝑍 + 𝑆𝛾

𝑆𝛾 = 𝑚𝑠𝑆 + 𝑚𝜇𝑀

𝑆Γ = [ 1 − 𝑚𝑠
2𝑆2 + 1 −𝑚𝜇

2
𝑀2]/8𝑙𝑛2



CW PROFILE PEAK BROADENING IN GSAS-II
The split of sample broadening from instrumental contribution
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Instrument – fixed from calibration
Sample – phase & histogram dependent
Refined & constrained as needed

NB: for APS 11BM X,Y & Z = 0

Sample: 
New NIST SRMS 
640f & 676b



TOF PROFILE FUNCTION IN GSAS-II

The best of gsas fxns 1, 3, 4 & 5 combined (2 is not implemented)
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Convolution of paired exponentials and a pseudoVoigt

N, p, q, u, v, x & y functions of a, b,  & 

Empirical relationships to d-spacing

𝛼 = Τ∝0
𝑑; 𝛽 = 𝛽0 + ൗ𝛽1

𝑑4 + ൗ
𝛽𝑞

𝑑2

𝜎2 = 𝑠0 + 𝑠1𝑑
2 + 𝑠2𝑑

4 + 𝑆𝑞𝑑 + 𝑆Γ

𝛾 = 𝑋𝑑 + 𝑌𝑑2 + 𝑍 + 𝑆𝛾

Sample broadening terms  
- earlier slide; may be hkl
dependent

Peak position 
– not peak top

New terms for 
epithermal effects

T = Cd+Ad2+B/d+Z
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TOF PROFILE PEAK BROADENING IN GSAS-II
The split of sample broadening from instrumental contribution

Instrument – fixed from calibration Sample – phase & histogram dependent
Independent of experiment (e.g. CW or TOF)

Sample: 
New NIST SRMS 
640f & 676b



AXIAL BROADENING FUNCTION – CONST. 
WAVELENGTH
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Finger, Cox & Jephcoat based on van Laar & Yelon

2Bragg2i2min

 Pseudo-Voigt
= profile function

Depend on slit & sample “heights” wrt diffr. radius
H/L & S/L - parameters in function; combined as H+S/L in GSAS-II
(typically 0.005 - 0.020)

Debye-Scherrer
cone

2 Scan

Slit

H



HOW GOOD IS THIS FUNCTION?
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Protein Rietveld refinement - Very low angle fit
1.0-4.0° peaks - strong asymmetry
“perfect” fit to shape



PROFILE FUNCTION – COMPLEXITIES
AN EXAMPLE – UNUSUAL LINE BROADENING
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Sharp lines

Broad lines

Seeming inconsistency in line broadening - hkl dependent



MICROSTRAIN BROADENING 
– PHYSICAL MODEL
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Stephens, P.W. (1999). J. Appl. Cryst. 32, 281-
289.
Also see Popa, N. (1998). J. Appl. Cryst. 31, 
176-180.

Model – elastic deformation of crystallites
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Broadening – variance in Mhkl; refine Cij



NA PARAHYDROXYBENZOATE
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Unusual micostrain effects - peak broadening

Directional 

dependence -

Lattice defects?

Inclusion allowed 

OH atom 

placement from F 

map



INTENSITY EXTRACTION 
Structure factors from powder patterns? → structure solution
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Apportion Io by ratios of Ic(H)
for contributing reflections →

Sum over all under peak profile
Correct for multiplicity & Lp, etc.
Result is F2(H)

Here 4 reflections contribute

LeBail algorithm – extracted F2
o → new F2

c then next cycle; 
refine only background, peak shapes & positions – few parameters
No constraints needed for overlaps – Simple

Pawley refinement – F2
o are parameters

+ background, peak shapes & positions – many parameters
Constraints & restraints required for overlaps - Complex



RIETVELD REFINEMENT – A SIMPLE EXAMPLE



AN EXAMPLE: FLUROAPATITE

▪ Notice shape of difference curve – position/shape/intensity errors

Add atoms & do default initial refinement
– scale & background
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ERRORS & PARAMETERS?
▪ position – lattice parameters, zero point (not common)

- other systematic effects – sample shift/offset

▪ shape – profile coefficients – sample size/mstrain

(U, V, W, X, Y, etc. in GSAS-II are instrument parms.)

▪ intensity – crystal structure (atom positions & thermal parameters)

- other systematic effects (absorption/extinction/preferred orientation)
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NB – get linear combination of all the above

NB2 – trend with 2 (or TOF) important

a – too small size - too large Ca2(x) – too small

too sharppeak shift wrong intensity



DIFFERENCE CURVE – WHAT TO DO NEXT?

▪ Dominant error – peak positions? peak shapes - too sharp?

▪ Refine sample mstrain parameter next & include lattice parameters

▪NB - EACH CASE IS DIFFERENT – no magic recipe
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Characteristic “up-down-up”

→profile error

NB – can be “down-up-

down” for too “fat” profile



RESULT – MUCH IMPROVED!

▪maybe intensity differences remain

– refine coordinates & thermal parms.
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RESULT – ESSENTIALLY UNCHANGED
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◼Thus, major error in the initial model –

peak shapes & sample displacement/lattice parameters

Ca

F

PO4



A USEFUL PLOT – COVARIANCE MATRIX
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Green:  cov>0
Red: cov<0
Yellow: cov~0
Cursor reports:
Cov or value(esd) 
on diagonal
Can be zoomed!

Beware white 
bands & nan:
Singularities!



A FEW FINAL WORDS
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“A Rietveld refinement is never perfected, merely 
abandoned” (P. Stephens, 2000)

“Rietveld refinement is one of those few fields of 
intellectual endeavor wherein the more one does it, the 
less one understands.” (Sue Kesson)

“A Rietveld refinement is done when you run out of 
parameters” (R. Von Dreele)

Books:

Modern Powder Diffraction, Eds. J. Post & D. Bish (1989)

The Rietveld Method, Ed. R.A. Young (1993)

Powder Diffraction: Theory & Practice, Eds. R. Dinnebier & 
S. Billinge (2008)
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