Qualitative and Quantitative Phase Analysis

James A. Kaduk Poly Crystallography Inc. Naperville IL 60540 kaduk@polycrystallography.com

Qualitative Phase Identification

The peak positions in a powder diffraction pattern are determined by the size, shape, and symmetry of the unit cell. The relative intensities are determined by the arrangement of atoms. The powder pattern is thus an excellent "fingerprint" for phase identification.

To what do we compare our experimental data?

- PDF-4+ (annual) 444,133 entries (2021)
- WebPDF-4, PDF-4 Minerals (48,946), PDF-4/Axiom (97,789)
- PDF-4 Organics (annual) 547,295 (2021)
- PDF-2 (5 year) 316,820 (2021)

Databases and Indexes

- A database is a compilation of many similar records of identical format.
- An index is a subset of the database, and is used to yield potential matches.

Search/Match Methods

The phase identification process actually involves several steps:

- *Search* search an index for possible hits
- *Match* check the experimental pattern against the reference pattern
- *Identify* decide whether the match is reasonable
- *Repeat* for more phases
- (Quantify)

Phase Identification

- Pattern matching
- Boolean searches

(often most effective in combination)

History of Search/Match

Crystallographic databases and powder diffraction, J. A. Kaduk, Chapter 3.7 in *International Tables for Crystallography Volume H: Powder Diffraction* (2019).

Search/Match Examples

Crystallographic databases and powder diffraction, J. A. Kaduk, Chapter 3.7 in *International Tables for Crystallography Volume H: Powder Diffraction* (2019).

More Examples in Kaduk_ICDD.pptx/PDF

Now to quantitative phase analysis...

Harry Potter and the Sorcerer's (Philosopher's) Stone

Ron: Seeker? But first years never make the house team. You must be the youngest Quiddich player in ... *Harry:* ... a century. According to McGonagall. *Fred/George:* Well done, Harry. Wood's just told us. *Ron:* Fred and George are on the team, too. Beaters. *Fred/George:* Our job is to make sure *you* don't get bloodied up too bad.

Alastor "Mad-Eye" Moody – "Constant Vigilance"

Harry Potter and the Goblet of Fire (2005)

Ian Madsen, Nicola Scarlett, Reinhard Kleeberg, and Karsten Knorr, "Quantitative Phase Analysis", Chapter 3.9 in International Tables for Crystallography Volume H: Powder Diffraction (2019).

Quantitative Analysis

Quantitative analysis by X-ray diffraction is the best method to determine **phase** composition. "C. P. NaF" = NaF + NaHF₂

> Albert W. Hull (GE), "New Method of Chemical Analysis", *J. Amer. Chem. Soc.*, **41**, 1168-1175 (1919)

Quantitative Phase Analysis by X-ray Diffraction Papers in *Google Scholar*

Early QPA Bibliography

- P. Debye and P. Scherrer, "Interferenzen an regellos orientierten teilchen in röntgenlicht", *Physikalische Zeitschrift*, **17**, 277-283 (1916).
- P. Debye and P. Scherrer, "Interferenzen an regellos orientierten teilchen in röntgenlicht", *Physikalische Zeitschrift*, **18**, 291-301 (1917).
- A. W. Hull, "A new method of x-ray crystal analysis", *Phys. Rev.*, **10**, 661-661 (1917).
- A. W. Hull, "A new method of chemical analysis", *J. Amer. Chem. Soc.*, **41**, 1168-1195 (1919).
- A. L. Navais, "quantitative determination of the development of mullite in fired clays by an x-ray method", *J. Amer. Ceram. Soc.*, **8**, 296-302 (1925).

Significant Papers in Quantitative Analysis (1)

- L. E. Alexander and H. P. Klug, "Basic Aspects of Xray Absorption in Quantitative Diffraction Analysis of Powder Mixtures", *Anal. Chem.*, 20, 886-889 (1948).
- J. Leroux, D. H. Lennox, and K. Kay (Occupational Health Lab., Ottawa), "Direct quantitative X-ray Analysis by Diffraction-Absorption Technique", *Anal. Chem.*, 25, 740-743 (1953).
- L. E. Copeland and R. H. Bragg (Portland Cement Assoc.), "Quantitative X-ray Diffraction Analysis", *Anal. Chem.*, **30**, 196-201 (1958).

Significant Papers in Quantitative Analysis (2)

- P. M. de Wolff and J. W. Visser, "Absolute Intensities – Outline of a Recommended Practice", *Powder Diffraction*, 3, 202-204 (1988).
- R. F. Karlak and D. S. Burnett (Lockheed), "Quantitative Phase Analysis by X-ray", *Anal. Chem.*, **38**, 1741 (1996).
- F. H. Chung (Sherwin-Williams), "Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. I. Matrix-Flushing Method for Quantitative Multicomponent Analysis", *J. Appl. Cryst.*, 7, 519-525 (1974).

Significant Papers in Quantitative Analysis (3)

- F. H. Chung, "Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. II. Adiabatic principle of X-ray Diffraction Analysis of Mixtures", *J. Appl. Cryst.*, 7, 526-531 (1974).
- F. H. Chung, "Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. III. Simultaneous Determination of a Set of Reference Intensities", *J. Appl. Cryst.*, 8, 17-19 (1975).
- R. L. Snyder, C. R. Hubbard, and N. C.
 Panagiotopoulos, "A Second Generation Automated Powder Diffractometer Control System", *Adv. X-ray Anal.*, 25, 245-260 (1982).

Significant Papers in Quantitative Analysis (4)

- T. H. Starks, J. H. Fang, and L. S. Zevin (SIU), "A Standardless Method of Quantitative X-ray Diffractometry Using Target-Transformation Factor Analysis", *J. Int. Assn. Math. Geol.*, 16, 351-367 (1984).
- D. K. Smith, G. G. Johnson Jr., A. Scheible, A. M.
 Wims, J. L. Johnson, and G. Ullmann, "Quantitative X-ray Powder Diffraction Method Using the Full Diffraction Pattern", *Powd. Diff.*, 2, 73-81 (1987).
- D. L. Bish and S. A. Howard, "Quantitative Phase Analysis Using the Rietveld Method", *J. Appl. Cryst.*, **21**, 86-91 (1988).

Significant Papers in Quantitative Analysis (5)

- D. K. Smith, G. G. Johnson Jr., M. J. Kelton, and C. A. Andersen, "Chemical Constraints in quantitative X-ray Powder Diffraction for Mineral Analysis of the Sand/Silt Fractions of Sedimentary Rocks", *Adv. X-ray Anal.*, **32**, 489-496 (1989).
- Plus the usual treatments of powder diffraction:
 Pecharsky & Zavalij, Jenkins & Snyder,
 Klug & Alexander, Cullity & Stock,
 Clearfield, Reibenspies & Bhuvanesh, Dinnebier & Billinge, Mittemeijer & Welzel ...

Quantitative phase analysis relies on measurement of *intensities*. Intensities (especially absolute) are the weakest aspect of a powder diffraction measurement. QPA is thus hard!

Intensity is a function of

- Crystal structure
- Instrument (kV, mA, slits, ...)
- Specimen
- Measurement technique
- Data processing technique
- Concentration

Which intensity?

- (Peak height)
- Single peak integrated intensity
- Peak cluster(s)
- Whole pattern

Intensity of a Diffraction Peak

$$I_{(hkl)\alpha} = \frac{I_0 \lambda^3}{64\pi r} \left(\frac{e^2}{m_e c^2}\right)^2 \frac{M_{(hkl)}}{V_\alpha^2} |F_{(hkl)\alpha}|^2 \left(\frac{1 + \cos^2(2\theta)\cos^2(2\theta_m)}{\sin^2\theta\cos\theta}\right)_{hkl} \frac{v_\alpha}{\mu_s}$$

Io	incident beam intensity	μ_s	linear absorption coefficient of specimen	V_{lpha}	volume of the unit cell of phase α
r	distance from specimen to detector	να	volume fraction of phase α	$2 heta_m$	diffraction angle of the monochromator
λ	X-ray wavelength	M _{hkl}	multiplicity of reflection hkl of phase α	$F_{(hkl)lpha}$	structure factor for reflection hkl of phase α
$(e^2/m_ec^2)^2$	square of classical electron radius	0	Lorentz- polarization correction		

or, in terms of weight fraction:

$$I_{(hkl)\alpha} = \left[\frac{I_0\lambda^3}{64\pi r} \left(\frac{e^2}{m_e c^2}\right)^2\right] \left[\frac{M_{(hkl)}}{V_{\alpha}^2} \left|F_{(hkl)\alpha}\right|^2 \left(\frac{1+\cos^2(2\theta)\cos^2(2\theta_m)}{\sin^2\theta\cos\theta}\right)_{hkl}\right] \left[\frac{X_{\alpha}}{\rho_{\alpha}(\mu/\rho)_s}\right]$$

$$I_{(hkl)\alpha} = \frac{K_e K_{(hkl)\alpha} X_{\alpha}}{\rho_{\alpha} (\mu / \rho)_s}$$

Χα	weight fraction of phase α	ρα	density of phase α
(μ/ρ)s	mass attenuation coefficient of the polyphase specimen	μ	linear absorption coefficient

Absorption is the fundamental problem in quantitative phase analysis. Absorption needs to be measured, estimated, ignored, or calculated:

$$\left(\frac{\mu}{\rho}\right)_{s} = \sum_{j} \left(\frac{\mu}{\rho}\right)_{j} X_{j}$$

The single intensity equation contains two unknowns - X_{α} and $(\mu/\rho)_s$ – how do we get the extra information necessary to solve the problem?

The Absorption-Diffraction Method

Consider the intensity of a line of phase α in a mixture and in the pure phase:

$$\frac{I_{(hkl)\alpha}}{I_{(hkl)\alpha}^{0}} = \frac{\left(\mu/\rho\right)_{\alpha}}{\left(\mu/\rho\right)_{s}} X_{\alpha}$$

Calculate from bulk chemical analysis.

If the mass absorption coefficients of the analyte and the mixture are the same,

 $\frac{I_{(hkl)\alpha}}{I_{(hkl)\alpha}^{0}} = X_{\alpha}$

ASTM D5758-01

How well (or poorly) can you do? B-MFI HAMS-1B-3

Sample #	16171-106-1	18855-110-1	18855-112-1	18855-11-2
Area 16/6/05	33.26(4)	32.18(8)	29.66(17)	34.69(16)
$\sigma_{ m rel},\%$	0.1	0.2	0.6	0.5
Crystallinity, %	95.9(4)	92.8(5)	85.5(6)	100
Area 22/6/05		28.76(5)	27.39(13)	30.09(14)
		29.40(6)	28.19(9)	30.18(8)
$\sigma_{ m rel},\%$		0.2	0.5	0.5
$\sigma_{ m rel},\%$		0.2	0.3	0.3
Average		29.08(45)	27.79(56)	30.14(6)
$\sigma_{ m rel},\%$		1.5	2.0	0.2
Crystallinity, %		96.5(15)	92.2(20)	100
Area 11/2/99	3386(37)			3731(20)
$\sigma_{ m rel},\%$	1.1			0.5
Crystallinity, %	90.7(11)			100
Area 22/12/97	3446(32)			3574(68)
$\sigma_{ m rel},\%$	0.9			1.9
Crystallinity, %	96.4(20)			100
Grand average	94(3)	95(3)	89(5)	100

HAMS-1B-3 Catalysts

Sample	Area 1 cps-deg	Area 2 cps-deg	Area 3 cps-deg	Average cps-deg	Crystallinity
18855-116-1	4.06(2)	4.51(3)	4.42(2)	4.33(24)	10.4(6)%
18855-116-2	3.92(2)	4.31(4)	4.29(5)	4.17(22)	10.0(5)%
18855-116-3	4.01(3)	3.93(2)	4.08(4)	4.00(11)	9.6(2)%
18855-116-4	4.34(6)	4.31(3)	4.14(6)	4.26(11)	10.2(3)%
18855-116-5	4.31(4)	3.99(6)	4.03(4)	4.11(17)	9.9(4)%
18855-116-6	3.74(6)	3.84(7)	3.74(4)	3.77(6)	9.1(1)%
18855-116-7	4.22(4)	4.25(13)	4.30(5)	4.26(4)	10.2(1)%
18855-11-2 reference	41.55(30)	41.65(16)	41.80(17)	41.67(12)	100%
Now take extra care...

Heroic Measures?

Naperville and Hull Analyses of B-MFI Concentration in AMSAC Catalysts

Weight Gain (16% RH) of Sieve and Catalyst Dehydrated at 350C

Naperville and Hull Processing of Hull MFI Crystallinity Data

Physical Mixtures of B-MFI Reference 18855-11-2 and Amorphous Silica/Alumina 9743-58-1

44

B-MFI Concentrations in Mixtures of 18855-11-2 and ASTM N10131 γ-Alumina (Equilibrated at 58% RH)

B-MFI Concentrations in Mixtures of 18855-11-2 and Micronized ASTM N10131 γ -Al₂O₃ (Equilibrated at 58% RH)

Gravimetric B-MFI Concentration, wt%

Al-MFI

Large-Particle Al-MFI 21455-77-1

Al-MFI Raw Data

Al-MFI Corrected for Displacement

50

Typical Profile Fit

Peak Cluster Areas ALPS Lot SD05301S

Sample #	21455-45-1	19704-55-1 Reference
501/051/151/303/133	47.07(12)	47.39(10)
area,	47.31(12)	46.34(9)
cps/channel-deg	49.05(11)	46.62(9)
Average	47.81(108)	46.78(54)
$\sigma_{\text{relative}}, \%$	2.2	1.2
Crystallinity, %	103(3)	100 52

Error Propagation

 $\sigma^{2}(area) = \sigma^{2}(501) + \sigma^{2}(051) + \sigma^{2}(151) + \sigma^{2}(303) + \sigma^{2}(133)$

$$d\frac{x}{y} = \frac{1}{y}dx - \frac{x}{y^2}dy$$

$$\sigma^{2}(crystallinity) = \left(\frac{\sigma(sample)}{area(reference)}\right)^{2} + \left(\frac{area(sample)\sigma(reference)}{area^{2}(reference)}\right)^{2}$$

A favorable case - polymorphs

Consider rutile and anatase (pigments, catalyst supports)

 $\frac{X_r}{X_a} = \frac{I_{(101)a}^0}{I_{(110)r}^0} \frac{I_r}{I_a}$

The ratio of the intensities of the lines in the pure phases is a measure of their absolute intensities, or a *relative intensity ratio* (RIR). For anatase/rutile, this ratio is 1.33.

Klug's equation for binary mixtures

$$I_{(hkl)\alpha} = \frac{K_e K_{(hkl)\alpha} X_{\alpha}}{\rho_{\alpha} \left[X_{\alpha} (\mu/\rho)_{\alpha} + X_{\beta} (\mu/\rho)_{\beta} \right]}$$

For pure phase α :

$$I_{(hkl)\alpha}^{0} = \frac{K_e K_{(hkl)\alpha}}{\rho_{\alpha} (\mu/\rho)_{\alpha}}$$

$$\frac{I_{(hkl)\alpha}}{I_{(hkl)\alpha}^{0}} = \frac{X_{\alpha}(\mu/\rho)_{\alpha}}{X_{\alpha}(\mu/\rho)_{\alpha} + X_{\beta}(\mu/\rho)_{\beta}}$$

For a binary mixture,

$$X_{\alpha} + X_{\beta} = 1$$

$$\frac{I_{(hkl)\alpha}}{I_{(hkl)\alpha}^{0}} = \frac{X_{\alpha}(\mu/\rho)_{\alpha}}{X_{\alpha}\left[\left(\mu/\rho\right)_{\alpha} - \left(\mu/\rho\right)_{\beta}\right] + \left(\mu/\rho\right)_{\beta}}$$
$$X_{\alpha} = \frac{\left(I_{(hkl)\alpha}/I_{(hkl)\alpha}^{0}\right)\left(\mu/\rho\right)_{\beta}}{\left(\mu/\rho\right)_{\alpha} - \left(I_{(hkl)\alpha}/I_{(hkl)\alpha}^{0}\right)\left[\left(\mu/\rho\right)_{\alpha} - \left(\mu/\rho\right)_{\beta}\right]}$$

β not analyzed, and not even identified

$$\frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}} = \frac{K_{(hkl)\alpha}\rho_{\beta}\left(X_{\alpha} + Y_{\alpha}\right)}{K_{(hkl)'\beta}\rho_{\alpha}X_{\beta}}$$

 $\begin{array}{ll} X_{\alpha} & = \\ X_{\beta} & = \\ Y_{\alpha} & = \end{array}$

the initial weight fraction of phase α the initial weight fraction of phase β the number of grams of pure phase α added per gram of the original sample

$$\frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}} = K(X_{\alpha} + Y_{\alpha})$$

Spiking of Micronised MFI/Quartz Blend 21031-98-1

The Internal Standard Method

$$I_{(hkl)\alpha} = \frac{K_e K_{(hkl)\alpha} X_{\alpha}}{\rho_{\alpha} (\mu / \rho)_s}$$

is thus linear with a slope k. Therefore k is a measure of the inherent diffracted intensities of the two phases. If β is corundum in a 50:50 weight mixture with phase α , and we use the *hkl*s of the most-intense lines, we obtain the material constant of α called $I/I_{corundum}$, or I/I_c . (peak or integrated intensity)

Generalize the Reference Intensity Ratio:

 $RIR_{\alpha,\beta} = \left(\frac{I_{(hkl)\alpha}}{I_{(hkl)\beta}}\right) \left(\frac{I_{(hkl)\beta}^{rel}}{I_{(hkl)\alpha}^{rel}}\right) \left(\frac{X_{\beta}}{X_{\alpha}}\right)$

Quantitative Analysis with RIRs

$$X_{\alpha} = \left(\frac{I_{(hkl)\alpha}}{I_{(hkl)\beta}}\right) \left(\frac{I_{(hkl)\beta}^{rel}}{I_{(hkl)\alpha}^{rel}}\right) \left(\frac{X_{\beta}}{RIR_{\alpha,\beta}}\right)$$

How do I obtain the RIR?

- (PDF)
- Careful calibration (1-point)
- Slope of the internal standard plot
- Derivation from other RIRs:

$$RIR_{\alpha,\beta} = \frac{RIR_{\alpha,\gamma}}{RIR_{\beta,\gamma}}$$

• Calculation

$$X_{\alpha} = \left(\frac{I_{(hkl)\alpha}}{I_{(hkl)\beta}}\right) \left(\frac{I_{(hkl)\beta}^{rel}}{I_{(hkl)\alpha}^{rel}}\right) \left(\frac{RIR_{\beta,c}}{RIR_{\alpha,c}}\right) X_{\beta}$$

This equation is completely general, and is valid for mixtures containing unidentified phases, amorphous phases, or identified phases with unknown RIRs. If the four required constants are taken from the literature, however, the results should be considered only semiquantitative! The Normalized RIR Method (Chung's matrix flushing) (adiabatic principle)

 $\left(\frac{X_{\alpha}}{X_{\beta}}\right) = \left(\frac{I_{(hkl)\alpha}}{I_{(hkl)\beta}}\right) \left(\frac{I_{(hkl)\beta}^{rel}}{I_{(hkl)\alpha}^{rel}}\right) \left(\frac{RIR_{\beta,c}}{RIR_{\beta,c}}\right)$

If no amorphous material is present,

$$\begin{split} \sum_{j=1}^{n} X_{j} &= 1 \\ X_{\alpha} &= \frac{I_{(hkl)\alpha}}{RIR_{\alpha} I_{(hkl)\alpha}^{rel}} \Biggl[\frac{1}{\sum_{j=1}^{n} \Bigl(I_{(hkl)'j} \big/ RIR_{j} I_{(hkl)'j}^{rel} \Bigr)} \Biggr] \end{split}$$

Total Pattern Methods

- Structureless
- Rietveld
Structureless Full Patterns

- Generate a library of full patterns experimental, calculated, amorphous, ...
- (background)
- Full-pattern search/match, then least squares; use the scale factors to calculate quantitative phase analysis (bulk chemistry)
- GMQUANT: D. K. Smith, G. G. Johnson Jr., A. Scheible, A. N. Wims, J. L. Johnson, and G. Ullman, *Powder Diffr.*, **2**, 73-77 (1987).
- SNAP-1D (Bruker AXS/University of Glasgow)
- "infrared spectra"
- *FULLPAT*: S. J. Chipera and D. L. Bish, *J. Appl. Cryst.*, **35**(6), 744-749(2002).

The Rietveld Method

- Utilize the full profile, reducing systematic errors of preferred orientation, extinction, and instrument configuration
- More efficient treatment of overlapping peaks handle greater complexity and/or broader peaks
- Refine the crystal structures and peak profiles providing quantitative analysis on a microscopic scale, and eliminating the distorting effects of structural changes on the relative intensities
- Fit the background over the whole pattern, leading to better definition of peak intensities
- Compensate for preferred orientation
- Correct propagation of errors
- With an internal standard, quantify amorphous phase(s)

The "SMZ" Method

- R. J. Hill, Powder Diffr., 6, 74-77 (1991)
- J. A. Kaduk, "X-ray Diffraction in the Petroleum and Petrochemical Industry", in *Industrial Applications of X-ray Diffraction*, F. K. Chung and D. K. Smith, eds., pp. 207-256, Marcel Dekker (2000).

The "SMZ" Method

- *S* (the phase fraction) is a quantity proportional to the number of unit cells of a phase present in the specimen (variable definitions GSAS and FullProf use this one)
- *M* is the formula weight
- *Z* is the number of formula weights per unit cell
- *SMZ* is proportional to the mass of unit cells, and thus the concentration of the phase

Vanadium Phosphate Catalyst Precursor

77

Scaling: 55.0 (5.0x)

A Rietveld QPA Example, with Amorphous Material

Phase	S	М	Z	SMZ	Wt%	True wt%	Si-free wt%
VO(HPO ₄)(H ₂ O) _{0.5}	5.82(3)	171.91	4	4002	66.0	30.3	35.9(2)
Si	9.17(7)	28.086	8	2060	33.9	15.58	-
Amorphous					0	54.1	64.1(2)
Sum				6062	99.9	100	100

15.58/33.9 = 0.4591.0000 - 0.1558 = 0.8442

How do I choose the internal standard?

- Simple diffraction pattern / minimal overlap
- μ similar to sample / minimize microabsorption
- Minimal sample-related aberrations
 - Fine grained
 - No preferred orientation
 - 100% (or known) crystallinity
- Stable and unreactive
- Corundum, rutile, zincite, eskolaite, hematite, cerianite, fluorite, diamond
- Organic standard??

How much internal standard do I add?

T. Westphal, T. Füllmann, and H. Pöllmann, "Rietveld quantification of amorphous portions with an internal standard – Mathematical consequences of the experimental approach", *Powder Diffraction*, 24(3), 239-243 (2009).

$$A = \frac{100\%}{100\% - R} \cdot 100\% \cdot \left[1 - \frac{R}{R_R} \right]$$
$$R = 100\% \cdot \frac{100\% - A}{2 \cdot 100\% - A}$$

Partial or No Known Crystal Structure (PONKCS)

- hkl_phase
- peaks_phase (also for amorphous)
- Supercells
- Full pattern references / Debye functions
- Model the disorder
 - NEWMOD+, WILDFIRE, DIFFAX+, FAULTS

"Effect of microabsorption on the determination of amorphous content *via* powder X-ray diffraction", N. V. Y. Scarlett and I. C. Madsen, *Powder Diffraction* **33**(1), 26-37 (2018). "Comparison of Rietveld-compatible structureless fitting analysis methods for accurate quantification of carbon dioxide fixation in ultramafic mine tailings", C. C. Turvey, J. L. Hamilton, and S. A. Wilson, *American Mineralogist*, **103**, 1649-1662 (2018). A new method for quantitative phase analysis using X-ray powder diffraction: direct derivation of weight fractions from observed integrated intensities and chemical compositions of individual phases, H. Toraya, *J. Appl. Cryst.* **49**, 1058-1516 (2016).

Figure 6

Variations of w_k as a function of $2\theta^{\text{UL}}$ for individual components of S3-4. Red and yellow lines represent the w_k values obtained by applying VPP and EqP, respectively, for unresolved, overlapped diffraction lines. Dashed lines represent weight fractions as weighed for the three components. Direct derivation (DD) of weight fractions of individual crystalline phases from observed intensities and chemical composition data: incorporation of the DD method into the whole-powder-pattern fitting procedure, H. Toraya, *J. Appl. Cryst.*, **51**, 446-455 (2018)

the least-squares fit. In this study, a practical approach in which single-phase observed patterns are used for the direct fitting without subtracting their BG intensities is proposed. In QPA, the contribution of BG intensities can be neutralized by converting the sum of BG-included intensities into the sum of BG-subtracted intensities by multiplying by a conversion factor. When the magnitudes of the conversion factors are almost identical for all components, they can be canceled out under the normalization condition in deriving weight fractions, and they are not required in QPA. The magnitude of the conversion factor for each component can be determined by one of two experimental techniques: using a single-phase powder of the target component or a mixture containing the target component in a known weight ratio. The theoretical basis of the present procedure is given, and the procedure is experimentally verified. In this procedure, the interaction between the BGF and the BG-included observed pattern is negligibly small. Least-squares fitting with a few adjustable parameters is very fast and stable. Accurate QPA could be conducted, as indicated by the average deviation of 0.05% from weighed values in QPA of α -Al₂O₃ + γ -Al₂O₃ mixtures with five different weight ratios and 0.4% in OPA of an α -SiO₂ + SiO₂ class mixture

home

U

ıh.

÷

Keywords: X-ray powder diffraction; quantitative phase analysis; direct-derivation method; intensity-composition formula; background subtraction; low-crystallinity materials; amorphous

Intensity Errors in Quantitative Analysis

- Instrument aberrations (Cline *et al.*)
- Beam spillover at low angles
- Absorption
- Variable sampling volume
- Surface roughness
- Particle statistics
- Microabsorption
- Signal/noise
- Change of the sample during specimen preparation
- Preferred orientation

Absorption

Effect of Absorption in Quantitative Analysis

Data from H. P. Klug & L. E. Alexander, *X-ray Diffraction Procedures, Second Edition* (1974). 94

Bulk Absorption

 2θ , deg

Effective Specimen Thickness

$$t = \frac{3.2}{\mu} \frac{\rho}{\rho'} \sin \theta$$

H. P. Klug & L. E. Alexander, *X-ray Diffraction Procedures, Second Edition*, p. 486 (1974)

Effective Specimen Thickness

Compound	μ, cm ⁻¹	t, μm
ZnO	277	50
CeO ₂	2176	6

$$\frac{I_{Ce}}{I_{Zn}} = \frac{14.565}{5.251} \times \frac{6}{50} = 0.33$$

Variable Sampling Volume

$$t = \frac{3.2}{\mu} \frac{\rho}{\rho'} \sin \theta$$

10% RuO₂/SiO₂ Catalyst

Penetration Depth, µm

20, °	28	130
Pure RuO ₂	22	70
10% RuO ₂ /90% SiO ₂	100	340

Mario Birkholz, *Thin Film Analysis by X-ray Scattering*, Wiley-VCH (2006).

International Tables for Crystallography, Volume H, Chapter 5.4, pp. 581-600 (2019)

Surface Roughness

R. J. Harrison and A. Paskin, *Acta Cryst.*, 17, 325 (1964).
P. Suortti, *J. Appl. Cryst.*, 5, 325-331 (1972).

$$I = I_1 + I_2 = \frac{I_0 \cos\theta}{2\mu} + \frac{I_0 \cos\theta}{x_B - x_A} \int_0^\infty dL \int_{x_A + L\cos\theta}^{x_B + L\cos\theta} \frac{1}{2} e^{\left[-\mu\left(L_a + L_a^*\right)\right]} \left[\frac{\partial\left(L_a - L_a^*\right)}{\partial x}\right] dx$$

Surface Roughness Effects in Cu

"A phase diagram for jammed matter", C. Song, P. Wang, and H. A. Makse, *Nature*, **453**, 629-632 (2008).

Random Close Packing = 63.4%

Random Loose Packing = 53.6%

KADUK14

An Extreme Example of Surface Roughness

108
Effect of Surface Roughness

Mounting	Packed Powder	Slurry	Slurry
Correction	None	None	Suortti 0.34/0.70
Co U_{iso} , Å ²	0.0125(8)	-0.0042(11)	0.0142(8)
Si U_{iso} , Å ²	0.0117(19)	-0.0049(22)	0.0135(21)
O U_{iso} , Å ²	0.003(2)	-0.013(2)	0.009(2)

Intensity Measurements on Different Size Fractions of < 325-Mesh Quartz Powder

Specimen #	15-50 μ fraction	5-50 μ fraction	5-15 μ fraction	$< 5 \mu$ fraction
1	7612	8688	10841	11055
2	8373	9040	11336	11040
3	8255	10232	11046	11386
4	9333	9333	11597	11212
5	4823	8530	11541	11460
6	11123	8617	11336	11260
7	11051	11598	11686	11241
8	5773	7818	11288	11428
9	8527	8021	11126	11406
10	10255	10190	10878	11444
Mean area	8513	9227	11268	11293
Mean deviation	1545	929	236	132
Mean % dev.	18.2	10.1	2.1	1.2

Klug and Alexander, X-ray Diffraction Procedures (1974), p. 366.

Rocking Curve of $(Ba_{0.7}Sr_{1.3})TiO_4$ HDELTA = 9.647 deg 21 June 2002

- How many grains are necessary to obtain a random pattern?
 - Describe orientation analytically
 - Represent all Bragg planes of a given set (*hkl*) by a perpendicular vector (reciprocal lattice vector)

D. K. Smith, *Powd. Diffr.*, **16**, 186-191 (2001).

- Randomness requires that the distribution of these vectors be uniform over space.
- Number of vectors per crystallite is multiplicity

Stereographic Projection

http://www.3dsoftware.com/Cartography/USGS/MapProjections/Azimuthal/Stereographic

- Circumscribe unit sphere around specimen
 - Distribution of vectors on sphere is uniform if random

Non-uniform if oriented

- Estimate volume of specimen in the beam
- $V = \text{area} \times (3 \times \text{half-depth})$
- Assume area ~ 1 cm × 1 cm = 100 mm^2
- $I/I_0 = e^{-\mu t} \rightarrow t_{1/2} = 0.693/\mu$
- $\mu(\text{SiO}_2) = 9.76 \text{ mm}^{-1} \rightarrow 3t_{1/2} \sim 0.2 \text{ mm}$
- $\therefore V \sim 20 \text{ mm}^3$

number of particles in irradiated volume

Diameter	40 µm	10 μ	1 μ
V/grain	3.35×10 ⁻⁵ mm ³	5.24×10 ⁻⁷	5.24×10 ⁻¹⁰
grains/mm ³	2.98×10 ⁴	1.91×10 ⁶	1.91×10 ⁹
grains/	5.97×10^{5}	3.82×10 ⁷	3.82×10 ¹⁰
20 mm^3			

How many particles are sufficient to observe a random powder pattern?

Particle Statistics area of sphere = 4π steradians

diameter	40 µm	10 µm	1 µm
area/pole	2.11×10-5	3.29×10 ⁻⁷	3.29×10 ⁻¹⁰
$A_p = 4\pi/N$			
interpole angle = arcsin[2(A_p) ^{1/2} / π]	0.297°	0.037°	0.005°

To determine how many particles will actually diffract, the angular range of diffraction is necessary.

Because the particle is small compared to the sample, the divergence is limited by the size of the X-ray target and the particle size.

Conditions of diffraction for a single particle

 Effect of Soller slit is to limit the length of the source visible to sample particle

L = 0.5 mm

• N_p = number of particles which may diffract = (area on unit sphere corresponding to divergence)/ area on unit sphere per particle

$$= A_D / A_P$$

To determine A_D requires relating effective source area, F×L, to area on a unit sphere

$$A_{\rm D} = \frac{FL}{R} = (0.1) (0.5)$$
$$= 2.5 \times 10^{-4}$$

diameter	40 µm	10 µm	1 µm
N _p	12	760	3800

The standard uncertainty in Poisson statistics is proportional to $n^{1/2}$, where n is the number of particles. If we'd like a relative error < 1%, we need $2.3\sigma = 2.3n^{1/2}/n < 1\%$. This means that n > 52900 particles!

- Even 1 μ m particles do not yield a sufficiently-uniform distribution of crystallites to achieve 1% accuracy in intensities!
 - Other factors affecting analysis:
 - Concentration
 - Reflection multiplicity
 - Specimen thickness
 - Peak width (crystallite size)
 - Specimen rotation/rocking

[WEBE182] 21071-3-comcar (45,30,zbc) JAK

127

Scott's Moss Control Granules

0-0-16 (N-P-K oxides) double sulfate of K and Mg 17.5% $FeSO_4(H_2O)$ K_2O 16% Mg 8% S 20% Fe 5%

Grind in a mortar and pestle, and measure from a static specimen

Micronize (corundum/hexane) and re-measure a rotating specimen

Pictures of the specimen surfaces

100 µm

Hand Ground

Micronised

Pictures by B. J. Huggins, BP Analytical

[kadu1011] Scott's Moss Control Granules, micronised (40,40,0.3) JAK

133

Look up the structures and carry out a Rietveld refinement

Quantitative Phase Analysis

Langbeinite	$K_2Mg_2(SO_4)_3$	80.49(4) wt%
Szomolnokite	FeSO ₄ (H ₂ O)	15.6(1) wt%
Halite	NaCl	3.74(6) wt%
Vanthoffite??	$Na_6Mg(SO_4)_4$	0.2(2) wt%

Observed and Expected Composition

	Observed, wt%	Bag, wt%
$FeSO_4(H_2O)$	15.6(1)	17.5
Fe	5.1	5
K ₂ O	18.2	16
Mg	9.4	8
S	21.5	20

"Particle statistics in quantitative X-ray diffractometry", N. J. Elton and P. D. Salt, *Powder Diffraction*, **11**(3), 218-229 (1996).

Microabsorption

Microabsorption G. W. Brindley, *Phil. Mag.*, **36**(7), 347 (1945)

The ideal ratio $I_{(hkl)\alpha}/I_{(hkl)\beta}$ is multiplied by a factor:

$$K = \frac{\tau_{\alpha}}{\tau_{\beta}} = \frac{V_{\beta} \int_{0}^{V_{\alpha}} e^{-(\mu_{\alpha} - \overline{\mu})x} dx}{V_{\alpha} \int_{0}^{V_{\beta}} e^{-(\mu_{\beta} - \overline{\mu})x} dx}$$

Anatase/Rutile Mixtures

Quantitative Phase Analysis

 $\left(\frac{X_{\alpha}}{X_{\beta}}\right) = \left(\frac{I_{(hkl)\alpha}}{I_{(hkl)\beta}}\right) \left(\frac{I_{(hkl)\beta}^{rel}}{I_{(hkl)\alpha}^{rel}}\right) \left(\frac{RIR_{\beta,c}}{RIR_{\alpha,c}}\right)$

 $\left(\frac{X_{r}}{X_{a}}\right) = \left(\frac{I_{(110)r}}{I_{(101)a}}\right) \left(\frac{100}{100}\right) \left(\frac{I/I_{c,a}}{I/I_{c,r}}\right)$

What are the I/I_c for anatase and rutile? Search the PDF-4+:
Rutile from PDF-4+ 2019

One of the High Ones

PDF-4+ 2019	L.L.																							_	٥	×
ile Edit Window Help																										
🍤 (Ti, Nb, Ta, Fe) (02 - 00-016-0934	,																								a 🔀
File Plots Help																										
Image: Series Toolbox Property Sheet																										
X-ray Diffraction				Simulated	d Profile (E	Exp-based	i)	100			1						1									
Wavelength: Cus	tom 🗸 Ka1: 1	1.5406		Raw Diffr	action Da	ata		90																		
O Neutron Diffraction	n		Fix	ed Slit In	tensity	~		80																		
Electron Diffraction	n			CO OIC III	contacty	•	_	70																		
28 (9)	d (Å)	I	h	k	1	*	lisit	50					 													
27,16527	3.280000	100	1	1	0		Inte /	40					 													
35.74411	2.510000	90	1	0	1			30					 													
38.78357	2.320000	30	2	0	0			20					 													
40.99131	2.200000	50	1	1	1		1	10					 											111		
43.69354	2.070000	20	2	1	0			0					-													
53.81934	1.702000	100	2	1	1																					
56.10347	1.638000	60	2	2	0				20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105
62.07456	1.494000	20	0	0	2		~										20	(°)								
PDF	Status:	Primary	/ Q.	uality Mar	rk: 😑 In	dexed			1																	
Experimental	Environment:	Ambier	nt Te	emperatur	re: 298.0	K (Assign	ed by I	CDD e	ditor) Pre	ssure: -																
Physical	Phase:	-																								
Crystal	Chemical Formula	a: 🔒 (T	i,Nb,	Ta , Fe)	02																					
Structure	Structural Formu	ila: _																								
Classifications	Empirical Formula	a: 🔒 0 ₂	Ті																							
Classifications	Weight %:	Weight %: 040.06 Ti59.94																								
Cross-references	Atomic %:	066.67	7 Ti33.3	33																						
References	Compound Name: Iron Niobium Tantalum Titanium Oxide																									
Comments	Mineral Name:	Rutile,	niobian	IMA	No: -																					
	Alternate Name:	-																								
	CAS Number:	-																								
	Entry Date:	09/01/	1966																							
	Modification Date	e: - Mo	odificati	ons: -																						
🛞 Search	ې Resul	lts - 201 of 4	412,083	(ті, Nb, т	a, Fe) O2	·																			

Ti and O only, Star, P4₂/mnm

00-021-1276 = 3.4!

Add ambient

Ti and O only, Star, ambient $I4_1/amd$

The support vendor and BP disagreed on the anatase concentrations...

The I/I_c Values

Phase	Vendor	BP GSAS	Average Fit
Anatase	5 (71-1166)	5.04	4.74(69) 5.11(169)
Rutile	3.4 (21-1276)	3.65	3.52(16) 3.605(1)

The equations are thus:

BP's method thus always yields anatase concentrations which are higher than the vendor's. Which (if either) of the methods is accurate?

Calcine some anatase to yield rutile. Make a series of mixtures.

Initial refinements yielded good fits, but anatase concentrations which were $\sim 8\%$ relative higher than expected. Refine the U_{iso} , but then the concentrations are too low. Manually vary to get the best fit to the concentrations:

The new structural models correspond to I/I_c of 3.58 and 5.04 for rutile and anatase. If we both use these values, our anatase concentrations should agree...

Wt% Anatase in Lot 2004250526

Filename	04780263a	04780263g	04780263m	BHAT199	BHAT200	BHAT201
Location	Vendor	Vendor	Vendor	BP	BP	BP
Vendor Rietveld	10.1(1)	10.0(1)	9.8(1)	8.9(1)	8.8(1)	8.9(1)
BP Rietveld	9.89(12)	9.87(12)	9.70(12)	8.45(7)	8.62(8)	8.38(7)
Vendor RIR	9	8	8	8	11	10
BP RIR p-V	9.22(88)	10.08(95)	9.38(75)	8.02(59)	8.19(62)	8.00(57)
BP RIR SPVII	9.84(34)	10.08(35)	9.30(37)	8.71(14)	8.61(17)	8.07(17)

Interim Conclusions

- The Vendor RIR and BP Rietveld methods yield the same value (= insignificantly different).
- BP Rietveld and RIR methods applied to the same data yield the same concentrations.
- The largest source of error in the RIR method is the error of the anatase (101) peak area.
- There is a subtle difference between the Vendor and BP Rietveld methods.
- There is a difference between the diffractometers (and sample preparations), which is yet to be explained.

Which (if any) analysis is correct?

The explanation?

Calcine some anatase at 1180°C to yield pure rutile. Make a new series of mixtures.

[BHAT208] 21031-67-1 5.51% anatase (40,40,0.3) JAK

162

QPA of As-Prepared Anatase/Rutile Mixtures

163

What's wrong? Microabsorption??

Microabsorption G. W. Brindley, *Phil. Mag.*, **36**(7), 347-369 (1945)

The ideal ratio $I_{(hkl)\alpha}/I_{(hkl)\beta}$ is multiplied by a factor:

$$K = \frac{\tau_{\alpha}}{\tau_{\beta}} = \frac{V_{\beta} \int_{0}^{V_{\alpha}} e^{-(\mu_{\alpha} - \overline{\mu})x} dx}{V_{\alpha} \int_{0}^{V_{\beta}} e^{-(\mu_{\beta} - \overline{\mu})x} dx}$$

Particle Size Distributions

Anatase

How big might the effect be? Consider the 30.15/69.85 wt% anatase/rutile mixture ($\mu = 520.6$ cm⁻¹).

Phase	Anatase	Rutile		
$\mu/\rho, cm^2/g$	125.7	125.7		
ρ , g/cm ³	3.893	4.250		
μ, cm ⁻¹	489.4	534.2		
μ - μ_{avg} , cm ⁻¹	-31.2	+13.6		
D, µm	3	150		
μD	0.147	8.01		
Size	Coarse powder	Very coarse powder! 167		

The correction factor is

$$\frac{\tau_A}{\tau_R} = \frac{1.014}{0.75} = 1.35$$

so the anatase concentrations should be 35% too high. But only 2/3 of the rutile is "large", so they should be only 23% too high. Correct the problem by micronising the mixtures:

QPA of Anatase/Rutile Mixtures

170

Quantitative Analysis of Micronised Anatase/Rutile Mixtures

Sample #	True wt% anatase	Filename	anatase, wt%	average wt% anatase	accuracy abs. wt%
21031-67-1	5.51	BHAT232 BHAT233 BHAT234	6.38(7) 6.31(7) 6.21(7)	6.30(8)	+0.79
21067-67-2	10.15	BHAT229 BHAT230 BHAT231	9.70(6) 9.65(6) 9.71(6)	9.69(3)	-0.46
21067-67-3	21.49	BHAT226 BHAT227	21.30(6) 21.32(7)	21.31(1)	-0.18
21067-67-4	30.15	BHAT223 BHAT224 BHAT225	30.19(6) 30.09(6) 30.20(6)	30.16(6)	0.01

Microabsorption Effects in Real Catalysts

172

The Effect of Signal/Noise on Quantitative Analysis

Fairfield County Fuel Deposit

174

Fairfield County Fuel Deposits

Sample #21506-25	Filter #1	Filter #2
Filename	GLAS262	GLAS263
mohrite, $(NH_4)_2Cu(SO_4)_2(H_2O)_6$, wt%	29.2(1)	24.1(3)
Na ₂ SO ₄ -III, wt%	21.1(2)	31.4(2)
lecontite, (NH ₄)NaSO ₄ (H ₂ O) ₂ , wt%	18.9(2)	4.5(4)
mascagnite, (NH ₄) ₂ SO ₄ , wt%	8.1(2)	19.0(2)
gypsum, $CaSO_4(H_2O)_2$, wt%	6.0(1)	-
copper, Cu, wt%	11.9(1)	13.1(1)
lepidocrocite, γ-FeOOH, wt%	2.3(1)	2.4(1)
quartz, SiO ₂ , wt%	2.5(1)	5.3(1)

Changes during Specimen Preparation

Plaster Scratch Coat

[kadu1014] Wall Plaster, dry ground (40,30,zbc,tape) JAK

The data and sample look/feel granular, so micronise the sample...
[kadu1013] Wall Plaster, micronised (40,30) JAK

Carry out a Rietveld refinement

Quantitative Phase Analysis

Name	Formula	Concentration, wt%
Quartz	SiO ₂	48.0(2)
Gypsum	$CaSO_4(H_2O)_2$	22.8(2)
Bassanite	$CaSO_4(H_2O)_{0.5}$	12.0(1)
Dolomite	$CaMg(CO_3)_2$	9.3(2)
Albite	(Na,Ca)(Si,Al) ₄ O ₈	7.9(2)

But the bassanite was not present in the original sample!

[kadu1014] Wall Plaster, dry ground (40,30,zbc,tape) JAK

When heated in air, gypsum is converted slowly to the (metastable) hemihydrate at about 70°C or below, and rapidly at 90°C and above...

W. A. Deere, R. A. Howie, and J. Zussman, *An Introduction to the Rock-Forming Minerals*, 2nd Edition (1992), p. 614. 3rd edition (2013)

Renormalize the concentrations:

Name	Formula	Concentration, wt%
Quartz	SiO ₂	47.0(2)
Gypsum	$CaSO_4(H_2O)_2$	36.2(3)
Dolomite	$CaMg(CO_3)_2$	9.1(2)
Albite	(Na,Ca)(Si,Al) ₄ O ₈	7.7(2)

The finish coat plaster is different (dry the slurry at ambient conditions!)

QPA of Finish Coat Plaster

Mineral	Formula	Concentration, wt%
Gypsum	$CaSO_4(H_2O)_2$	34.2(2)
Brucite	$Mg(OH)_2$	19.3(1)
Aragonite	CaCO ₃	26.0(2)
Calcite	CaCO ₃	13.0(1)
Quartz	SiO ₂	3.09(6)
Periclase	MgO	2.12(8)
Corundum (!)	Al ₂ O ₃	2.3(1)

Accuracy in Quantitative Phase Analysis

IUCr CPD QPA Round Robin

Sample	Data Source	Al ₂ O ₃ wt%	CaF ₂ wt%	ZnO wt%	Sample	Data Source	Al ₂ O ₃ wt%	CaF ₂ wt%	ZnO wt%
1A	Amoco CPD Weight	1.1(1) 1.3(2) 1.15	95.0(3) 94.2(6) 94.81	3.86(7) 4.5(1) 4.04	1E	Amoco CPD Weight	56.2(3) 55.4(2) 55.12	29.0(1) 29.7(1) 29.62	14.8(1) 14.9(1) 15.25
1B	XRF Amoco CPD Weight XRF	1.22 94.0(4) 94.1(3) 94.31 94.73	94.11 4.37(8) 4.37(6) 4.33 4.32	4.12 1.58(4) 1.53(3) 1.36 1.38	1F	Amoco CPD Weight XRF	55.79 28.4(4) 27.6(2) 27.06 27.32	29.39 18.0(2) 18.0(1) 17.72 17.44	15.34 53.6(2) 54.3(2) 55.22 54.88
1C	Amoco CPD Weight XRF	7.1(5) 6.1(3) 5.04 5.12	1.5(2) 1.47(9) 1.36 1.33	91.4(5) 92.5(3) 93.59 93.15	1G	Amoco CPD Weight XRF	32.9(3) 31.8(2) 31.37 31.70	33.9(2) 34.5(2) 34.42 33.86	33.2(2) 33.7(1) 34.21 34.01
1D	Amoco CPD Weight XRF	14.1(2) 14.1(1) 13.53 13.80	53.8(2) 53.5(2) 53.58 52.99	32.1(2) 32.4(1) 32.89 32.98	1H	Amoco CPD Weight XRF	36.3(3) 35.2(2) 35.12 35.35	34.3(2) 35.1(2) 34.69 34.26	$29.4(2) 29.7(1) 30.19 30_{1}03$

CPD Rietveld QPA Round Robin Sample 1 Series Amoco Results

Errors in Concentrations

Absolute

Relative

"Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: Samples 1a to 1h," I. C. Madsen, N. V. Y. Scarlett, L. M. D. Cranswick, and T. Lwin, J. Applied *Cryst.*, **34**, 409-426 (2001).

Sample 2 – Preferred Orientation

Phase	Corundum	Fluorite	Zincite	Brucite
Weight	21.27	22.53	19.94	36.26
All data	21.8(26)	22.1(28)	19.6(52)	36.5(73)
$\sigma_{\rm rel}, \%$	12	13	26	20
My results	23.2(2)	22.1(1)	19.4(1)	35.3(4)

AKLD = 0.019 (4th-order spherical harmonics for brucite) Absolute Kullback-Liebler Distance

$$KLD = 0.01 \times wt\%_{true} \times \ln\left(\frac{wt\%_{true}}{wt\%_{measured}}\right)$$

$$AKLD = \sum_{i=1}^{n} \left| KLD_i \right|$$

Sample 3 – Amorphous Content

Phase	Corundum	Fluorite	Zincite	Amorphous
Weight	30.79	20.06	19.68	29.47
All data	31.7(37)	19.9(45)	18.5(8)	30.6(21)
$\sigma_{\rm rel}, \%$	12	23	4	7
My results	29.6(2)	17.6(1)	17.1(1)	35.8

AKLD = 0.123 (added a quartz internal standard)

Sample 4 - Microabsorption

Phase	Corundum	Magnetite	Zircon	
Weight	nt 50.46 19.64		29.90	
All data	63.6(155)	13.5(148)	22.9(100)	
Neutron	51.7(15)	21.6(38)	26.7(47)	
My results, raw	60.9(1)	13.6(7)	25.5(2)	
My results, corrected	57.9(1)	15.8(7)	26.3(2)	

AKLD = 0.149 (corrected)

Synthetic Bauxite

Phase	Anatase	Boehmite	Goethite	Hematite	Quartz	Gibbsite	Kaolinite
Weight	2.00	14.93	9.98	10.00	5.16	54.90	3.02
All data	3.0(4)	20.3(22)	13.9(33)	14.6(47)	7.0(12)	37.6(66)	3.9(20)
$\sigma_{\rm rel},\%$	13	11	24	32	17	18	51
My results	2.6(1)	17.3(2)	11.2(1)	10.0(1)	5.2(1)	49.3(2)	4.5(3)

AKLD = 0.110

2nd-order spherical harmonic preferred orientation correction on for gibbsite

Natural Granodiorite

Phase	Quartz	ΣFeldspars	Biotite	Clinochlore	Hornblende	Zircon
All data	31(6)	56	9(4)	2(1)	1.6(13)	0.06(18)
My results	44	50	4	Trace	2	-

Pharmaceutical 1

Phase	β-D-mannitol	Sucrose	DL-valine	Nizatidine
Weight	45.9	35.0	10.0	10.0
"all data"	40.4(73)	32.6(26)	15.2(139)	11.6(93)
My results	38.4(4)	28.3(4)	17.8(6)	15.4(6)

A look at this sample under an optical microscope (good advice for any analyst – and advice which should probably be included in the paper!) was enough to scare anyone away from it. It contained large grains, and some really platy material. Even after micronising for 10 minutes using hexane as the milling liquid, preferred orientation was significant for mannitol and valine. The micronising added significant strain broadening to the profiles.

Pharmaceutical 2

Phase	β-D- mannitol	Sucrose	DL-valine	Nizatidine	Amorphous starch
Weight	20.0	15.0	20.0	15.0	30.0
Analysis #3	19.4	19.9	20.4	7.4	32.9
My results	27.0(4)	17.4(4)	20.7(6)	17.3(4)	17.6

This sample also had to be micronised – even after blending with the quartz internal standard. I collected the pattern relatively quickly, and a simple 3-term cosine Fourier series appeared to describe the background adequately. I suspect that better counting statistics would require the use of a real space pair correlation function, and would result in better quantification of the amorphous material. The ratios of the crystalline phases are actually not too bad.

IUCr CPD Round Robin on Quantitative Phase Analysis

"Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: samples 2, 3, 4, synthetic bauxite, natural granodiorite and pharmaceuticals," N. V. Y. Scarlett, I. C. Madsen, L. M. D. Cranswick, T. Lwin, E. Groleau, G. Stephenson, M. Aylmore, and N. Agron-Olshina, J. Applied Cryst., 35, 383-400 (2002).

Accuracy in Rietveld quantitative phase analysis of Portland cements

G. De la Torre and M. A. G. Aranda, *J. Appl. Cryst.*, **36**(5), 1169-1176 (2003).

Concentration Errors in Synthetic Portland Cements

Weight Concentration, %

Accuracy in Rietveld quantitative phase analysis: a comparative study of strictly monochromatic
Mo and Cu radiation, L. León-Reina, M. Garcia-Maté, G. Alvarez-Pinazo, I. Santacruz, O. Vallcorba, A. G. De la Torre, and M. A. G. Aranda, J. Appl. Crystallogr., 49 (2016); http://dx.doi.org/10.1107/S1600576716003873,

open access.

International Tables for Crystallography Volume H: Powder Diffraction, Chapter 3.10, pp. 374-384 (2019)

Table 3

Rietveld quantitative phase analyses for the crystalline inorganic mixtures measured with Cu $K\alpha_1$ and Mo $K\alpha_1$ radiations.

Weighed amounts ((%Wt) are shown	for the sake of com	parison (in bold). The AKLDs for each mixture	e and the KLD values for i-a	nhydrite are also included.
0	\ <i>/</i>		1	/		

	CGpQ_0.0A			CGpQ_0.25A		CGpQ_0.50A		CGpQ_1.0A			CGpQ_2.0A			CGpQ_4.0A				
Phases	%Wt	Mo trm	Cu rfl	%Wt	Mo trm	Cu rfl	%Wt	Mo trm	Cu rfl	%Wt	Mo trm	Cu rfl	%Wt	Mo trm	Cu rfl	%Wt	Mo trm	Cu rfl
С	32.9	32.6 (1)	30.4 (2)	32.8	32.0 (1)	33.6 (1)	32.7	33.2 (1)	32.8 (1)	32.5	32.8 (1)	32.6 (2)	32.2	31.3 (1)	31.4 (1)	31.6	31.2 (1)	31.8 (1)
Gp	31.7	31.7 (1)	34.5 (1)	31.7	32.5 (1)	31.6 (1)	31.6	30.1 (1)	30.7 (1)	31.5	30.4 (1)	30.7 (1)	31.1	32.1 (1)	32.3 (1)	30.5	30.7 (1)	30.5 (1)
Q	34.2	34.6 (1)	33.7 (1)	34.1	33.9 (1)	33.0 (1)	34.0	34.6 (1)	34.2 (1)	33.8	34.1 (1)	33.8 (1)	33.5	33.5 (1)	32.6 (1)	32.8	32.8 (1)	32.0 (1)
s-A	0.8	0.66 (3)	0.76 (5)	0.8	0.77 (4)	0.78 (5)	0.8	0.97 (3)	1.15 (5)	0.8	1.03 (4)	1.11 (5)	0.7	0.54 (3)	0.58 (5)	0.7	0.67 (3)	0.77 (4)
SrSO ₄	0.4	0.44 (4)	0.70 (6)	0.4	0.44(4)	0.67 (5)	0.4	0.39 (4)	0.56 (5)	0.4	0.43 (4)	0.68 (5)	0.4	0.48 (4)	0.68 (6)	0.4	0.45 (4)	0.63 (5)
i-A	-	-	-	0.28	0.42 (3)	0.42 (4)	0.52	0.71 (3)	0.71 (4)	1.02	1.23 (3)	1.17 (5)	2.02	2.05 (4)	2.38 (9)	4.02	4.30 (8)	4.33 (9)
AKLD sum (i-A) KLD		0.0089	0.0605		0.0198 -0.001	0.0235 -0.001		0.0295 -0.002	0.0180 -0.002		0.0214 -0.002	0.0152 -0.001		0.0218 0.000	0.0358 -0.003		0.0095 -0.004	0.0156 -0.003

Table 4RQPA for the crystalline organic mixtures measured with Cu $K\alpha_1$ and Mo $K\alpha_1$ radiations.

Weighed amounts (%Wt) are shown for the sake of com	parison (in bold). The AKLDs for each m	nixture and the KLD values for xylose are also included.
	······································	

	GFL_0.0X			GFL_0.25X		GFL_0.50X		GFL_1.0X			GFL_2.0X			GFL_4.0X				
Phases	%Wt	Mo trm	Cu rfl	%Wt	Mo trm	Cu rfl	%Wt	Mo trm	Cu rfl	%Wt	Mo trm	Cu rfl	%Wt	Mo trm	Cu rfl	%Wt	Mo trm	Cu rfl
G	33.4	33.8 (1)	33.5 (3)	33.3	33.6 (1)	33.1 (2)	33.2	32.3 (2)	33.5 (2)	33.0	34.7 (1)	33.6 (2)	32.7	32.2 (1)	31.5 (2)	32.0	32.8 (1)	33.6 (2)
F	33.5	31.7 (1)	32.7 (3)	33.4	32.3 (1)	34.3 (2)	33.3	32.1 (2)	33.4 (2)	33.1	32.6 (1)	33.7 (2)	32.8	31.7 (1)	34.4 (2)	32.2	30.7 (1)	32.5 (2)
L	33.1	34.5 (1)	33.7 (3)	33.0	33.7 (1)	32.0 (2)	33.0	35.0 (3)	32.5 (2)	32.8	31.6 (2)	31.4 (2)	32.5	34.3 (1)	32.0 (2)	31.8	32.9 (1)	30.5 (2)
Х	-	-	-	0.27	0.33 (4)	0.57 (9)	0.55	0.53 (8)	0.61 (9)	1.1	1.10 (5)	1.3 (1)	2.0	1.76 (5)	2.1 (1)	3.9	3.70 (5)	3.4 (2)
AKLD sum		0.0362	0.0150		0.0216	0.0231		0.0410	0.0096	•	0.0338	0.0280		0.0363	0.0339		0.0361	0.0372
(X) KLD		-	-		-0.001	-0.002		0.000	-0.001		0.000	-0.002		0.003	-0.001		0.002	0.005

The Reynolds Cup

www.clays.org/SocietyAwards/RCIntro.html

An example of organic quantitative phase analysis – cellulose/sucrose mixtures

Sucrose/Cellulose Mixtures

210

Sucrose/Cellulose Mixtures

211

Error in Quantitative Analysis

Better Specimen Prep

wt% sucrose = -0.8(17) + 1.01(3) expected

95% confidence limits = $\pm 3 \text{ wt}\%$

Specimen preparation can be especially-critical for organic samples!

Another Example of Organic QPA Duratuss GP 120-1200

[KADU798] Duratuss GP 120-1200

215

Quantitative Phase Analysis of Duratuss GP 120-1200

Phase	wt%	int. std. wt%	expected mg	wt%
guaifenesin	91.62(2)	90.4(4)	1200	90.9
pseudoephedrine hydrochloride	8.38(15)	7.7(4)	120	9.1
sum	100	98.1	1320	100

Actual tablets weigh $\sim 1540 \text{ mg}$ 120/1540 = 0.078!
Re-Visit the IUCr CPD QPARR Samples 1*n*

IUCr CPD QPARR – 2008 Results

Sample	Data Source	Al ₂ O ₃ wt%	CaF ₂ wt%	ZnO wt%	Sample	Data Source	Al ₂ O ₃ wt%	CaF ₂ wt%	ZnO wt%
1A	Ineos Weight	1.33(6) 1.15	95.1(1) 94.81	3.53(7) 4.04	1E	Ineos Weight	56.0(4) 55.12	29.3(3) 29.62	14.7(2) 15.25
1B	Ineos Weight	94.54(2) 94.31	4.13(2) 4.33	1.32(1) 1.36	1F	Ineos Weight	27.4(3) 27.06	17.9(0) 17.72	54.7(2) 55.22
1C	Ineos Weight	5.4(1) 5.04	1.27(2) 1.36	93.3(1) 93.59	1G	Ineos Weight	31.3(1) 31.37	34.9(0) 34.42	33.9(1) 34.21
1D	Ineos Weight	13.6(3) 13.53	54.3(1) 53.58	32.2(2) 32.89	1H	Ineos Weight	36.1(1) 35.12	34.5(1) 34.69	29.4(2) 30.19

IUCr CPD QPARR Samples 1*n* 2008 Results

Absolute Concentration Errors IUCr CPD QPARR Samples 1*n* 2008 Results, Triplicate Analyses

[marc02] C'Mere Deer powder (40,40,0.3) JAK

C'Mere Deer powder

rice bran, soybeans, corn, yeast, trace minerals (< 2%), artificial and natural flavorings

Address on the label is: EST, LLC 205 Fair Ave. Winnsboro LA 71295

Most US rice is grown in LA, so perhaps rice bran is cheap!

[marc08] rice bran (40,40,0.3) JAK

Rice is known to be good at extracting silica from the soil.

Maybe some quartz, too?

Quantitative Phase Analysis of C'Mere Deer Powder

Phase	Raw wt%	Abs. wt%	Real wt%
NaAlSiO ₄	5.2(2)	0.42	0.4(1)
Amylose	56.9(4)	4.60	4.7(1)
Sucrose	16.3(2)	1.32	1.3(1)
Si	21.62(6)	1.75	_

The Merck Index says that corn is typically 27% amylose and 73% amylopectin, so this translates into ~ 17 wt% corn.

Scaling "Experiments"

Variable	Rice Bran	Corn	Soybeans	Yeast
(background- subtracted) raw patterns	70	10	10	10
Amylose scale factors		11		
Diffuse scattering amplitudes	83			
Best Guess	76	15	4	4

1.3% sucrose, and traces of minerals and flavors.