Rietveld Profile Functions

NORTH CENTRAL COLLEGE 1861 James A. Kaduk Illinois Institute of Technology North Central College Kaduk@polycrystallography.com

Mottoes for the powder diffractionist

- It depends
- Overlap kills
- *Everything*'s a sample
- Desperate analysts do desperate things
- If you have a single crystal, you should use it

Convolution

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau) \cdot g(t - \tau) d\tau = \int_{-\infty}^{\infty} f(t - \tau) \cdot g(\tau) d\tau$$

The Fundamental Parameters approach

http://en.wikipedia.org/wiki/Convolution

Convolution

- Convolution of one function (input) with a second function (impulse response) gives the output of a system
- A weighted moving average
- In optics, "blur" is described by convolution

BHT working on convolution to generate instrument parameters

Left; perfect Si(111) Darwin profile. Right: perfect Si(111) reflection convoluted with first crystal strain function. Center: experimental data and fit by convolution of left and right curves.

O. Masson, E. Dooryhee, and A. N. Fitch, "Instrument line-profile synthesis in high-resolution synchrotron powder diffraction", J. Appl. Cryst., 36, 286-294 (2003).

 $Na_2Ca_3Al_2F_{14}$ (921) reflection. From left to right: the incident beam source profile, the transfer function of the monochromator, the pure sample profile, the reflection profile of the analyzer, and the axial divergence asymmetry function.

Masson, Dooryhee, and Fitch, in A. Le Bail, "The Profile of a Bragg Reflection for Extracting Intensities", in R. E. Dinnebier and S. J. L. Billinge, *Powder Diffraction: Theory and Practice*, RSC Publishing (2008).

Bragg-Brentano Diffractometer

Figure 4.25 Schematic representation of the fundamental parameters approach for a divergent beam diffractometer showing the principal optical components and the sample together with their related aberration functions as discussed in Section 2.2.2 including (1) finite X-ray source width, (2) primary axial divergence, (3) horizontal divergence, (4) crystallite size, (5) strain, (6) absorption, (7) secondary axial divergence and, (8) receiving slit width. Figure copyright Bruker AXS.

A. Kern, "Profile Analysis", in A. Clearfield, J. Reibenspies, and N. Bhuvanesh, *Principles and Applications of Powder Diffraction*, Wiley (2008).

Profile Contributions

Epsilon, degree

Profile Contributions

Effect	Equation	Range
X-ray Source	$exp(-k_1^2 \varepsilon^2)$ k_1 = 1.67(FWHM)	$-\infty$ to $+\infty$
Flat Surface	$ \varepsilon ^{-1/2}$	$-(\gamma^2 \cot \theta)/114.6 \text{ to } 0$ $\gamma = \text{divergence}$
Axial Divergence	$ 2\varepsilon \cot \theta ^{-1/2}$	$-(\delta^2 \cot\theta)/(4 \times 57.3) \text{ to } 0$ $\delta = \text{axial divergence}$
Transparency	$exp(k_4\varepsilon)$ $k_4 = (4\mu R/114.6)sin2\theta$	$-\infty$ to 0
Receiving Slit		-(FWHM)/2 to + (FWHM)/2

H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures, Wiley (1974).

Plus the Cu K_ Profile

٦

Fig. 4. Top: Cu Ka spectrum measured at the Si 444 reflection with the single-crystal spectrometer (crosses) and fitted curve (solid) consisting of four Lorentzians (dotted); bottom: absolute deviation of the fitted curve (50 times enlarged).

Fig. 5. Top: Cu Ka spectrum measured at the Si 333 reflection with the double-crystal spectrometer (crosses) and fitted curve (solid) consisting of four Lorentzians (dotted); bottom: absolute deviation of the fitted curve (50 times enlarged)

J. Hartwig, G. Hölzer, J. Wolf, and E. Förster, "Remeasurement of the Profile of the Characteristic Cu Kα Emission Line with High Precision and Accuracy", *J. Appl. Cryst.*, **26**, 539-548 (1993).

More on Emission Profiles

G. Hölzer, M. Fritsch, M. Deutsch, J. Härtwig, and E. Förster, " $K_{\alpha 1,2}$ and $K_{\beta 1,3}$ emission lines of *3d* transition metals", *Phys. Rev. A*, **56**, 4554-4568 (1997).

Multiconfiguration Dirac-Fock calculations in open-shell atoms: Convergence methods and satellite spectra of the copper Kα photoemission spectrum, C. T. Chantler, J. A. Lowe, and I. P. Grant, Phys. Rev. A, 82, 052505 (2010).

FIG. 1. Experimental and fitted theoretical spectrum for copper $K\alpha$. The curve bounding the residuals is $\pm \sigma$. The positions of the stick diagrams represent the transition energies contributing to the spectrum, and the height represents the intensity, normalized to the most intense transition of the group. The energy of the 4*s* spectator transition clearly indicates why approximate treatment of the open shell has provided good results in previous work.

High-precision measurement of the x-ray Cu Kα spectrum, M. H. Mendenhall, A. Henins, L. T. Hudson, C. I. Szabo, D. Windover, and J. P. Cline, *J. Phys. B: At. Mol. Opt. Phys.* **50**, 115004 (2017)

Figure 19. Separated peak components from the fit.

Hugo Rietveld's low-resolution neutron diffraction peaks were Gaussian (determined mainly by the neutron spectral distribution, the monochromator response function, and the divergences of the Soller collimators). He used the "Caglioti" function to describe the widths.

> H. M. Rietveld, "A Profile Refinement Method for Nuclear and Magnetic Strutcures", J. Appl. Cryst., 2, 65-71 (1969).

G. Caglioti, A. Paoletti, and F. P. Ricci, "Choice of Collimators for a Crystal Spectrometer for Neutron Diffraction:,

Nucl. Inst., 3, 223-228 (1958).

$FWHM^2 = U\tan^2\theta + V\tan\theta + W$

$FWHM^2 = A\tan^2\theta + B\tan\theta + C + D\cot^2\theta$

Fig. 3. FWHM curves for SRM 660 LaBs different slit configurations. Curve (1) corresponds to a receiving slit = 0.013° , a divergence slit of 0.25° and two Soller slits. Each curve corresponds to a change in one of the slits. Curve (1) to (2) is produced by an increase in receiving slit from 0.013° to 0.053° . Curve(2) to (3) arises from the increase in divergence slit from 0.25° to 1.25° . Curve (3) to (4) occurs when the diffracted beam Soller slit is removed. Error bars have been omitted because they are approximately the size of the plotted symbols.

R. W. Cheary and J. P. Cline, "An Analysis of the Effect of Different Instrumental Conditions on the Shapes of X-ray Powder Line Profiles", *Adv. X-ray Anal.*, **38**, 75-82 (1995).

Specimen Contributions

Size and (micro)Strain

Size Broadening

Figure 13.2 Schematic representation of the (001) diffraction condition (right) and amplitude of the diffracted intensity (left) in reciprocal space for an ideally perfect crystal (a) and for cubic crystalline domains of edge D [inset of (b)]. The profile for a dispersed system of cubic crystallites (dashed line) is also sketched out in (b).

P. Scardi, "Microstructural Properties: Lattice Defects and Domain Size Effects", in R. E. Dinnebier and S.J. L. Billinge, *Powder Diffraction: Theory and Practice*, RSC Publishing (2008)

Integral Breadth

Convert to 2θ space from reciprocal space:

$$\beta(2\theta) = \frac{\lambda K_{\beta}}{D\cos\theta}$$

Scherrer Constants for Various Crystallite Shapes

Shape	K (FWHM)	K (integral breadth)
Sphere	0.89	1.07
Cube	0.83-0.91	1.00-1.16
Tetrahedron	0.73-1.03	0.94-1.39
Octahedron	0.82-0.94	1.04-1.14

J. I. Langford and A. J. C. Wilson, "Scherrer after sixty years: A survey and some new results in the determination of crystallite size", *J. Appl. Cryst.*, **11**, 102-113 (1978)

Shape?

P. Scardi, "Microstructural Properties: Lattice Defects and Domain Size Effects", in R. E. Dinnebier and S.J. L. Billinge, *Powder Diffraction: Theory and Practice*, RSC Publishing (2008)

P. Scardi and M. Leoni, "Diffraction line profiles from polydisperse crystalline systems", Acta Cryst. Sect. A, 57, 604-613 (2001).

Size Distribution in Ceria Powder

Strain Broadening

Macrostrain

 $\lambda = 2d\sin\theta$ $0 = 2dd\sin\theta + 2d\cos\theta d\theta$ $0 = 2\Delta d\sin\theta + 2d\cos\theta \Delta\theta$ $\Delta 2\theta = -2\frac{\Delta d}{d}\tan\theta = -2\varepsilon\tan\theta$

Microstrain

 $\beta(2\theta) \propto \left\langle \varepsilon^2 \right\rangle^{1/2} \tan \theta$

Microstrain

P. Scardi, "Microstructural Properties: Lattice Defects and Domain Size Effects", in R. E. Dinnebier and S.J. L. Billinge, *Powder Diffraction: Theory and Practice*, RSC Publishing (2008)

Anisotropic Strain

P.W. Stephens, "Phenomenological model of anisotropic peak broadening in powder diffraction", J. Appl. Cryst., **32**, 281-289 (1999)

 $\frac{1}{d^2} = M_{hkl} = Ah^2 + Bk^2 + Cl^2 + Dkl + Ehl + Fhk$ $\frac{1}{a^{2}} = M_{hkl} = \alpha_{1}h^{2} + \alpha_{2}k^{2} + \alpha_{3}l^{2} + \alpha_{4}kl + \alpha_{5}hl + \alpha_{6}hk$ $\sigma^{2}(M_{hkl}) = \sum_{i,j} C_{ij} \frac{\partial M}{\partial \alpha} \frac{\partial M}{\partial \alpha}$ $\sigma^2(M_{hkl}) = \sum_{IIII} S_{HKL} h^H k^K l^L$ H + K + L = 4 $\sigma^{2}(M_{hkl}) = S_{400}h^{4} + S_{040}k^{4} + S_{004}l^{4} + 3(S_{220}h^{2}k^{2})$ $+S_{202}h^2l^2 + S_{022}k^2l^2) + 2(S_{310}h^3k + S_{103}hl^3)$ $+S_{031}k^3l + S_{130}hk^3 + S_{201}h^3l + S_{012}kl^3$) $+3(S_{211}h^2kl+S_{121}hk^2l+S_{112}hkl^2)$

Functional Forms of Size and Strain Broadening

Williamson-Hall Analysis

Real peaks have both Gaussian and Lorentzian (Cauchy) components

Same FWHM and area!

Profile Equations

S. A. Howard and K. D. Preston, "Profile Fitting of Powder Diffraction Patterns", in D. L. Bish and J. E. Post, *Modern Powder Diffraction* (1989), p. 217-275.

SRM 660a LaB₆

So use combination of Gaussian and Lorentzian

Voigt (convolution) pseudo-Voigt (sum)
L. W. Finger, D. E. Cox, and A. P. Jephcoat, "A Correction for Powder Diffraction Peak Asymmetry due to Axial Divergence",

J. Appl. Cryst., 27, 892-900 (1994).

Fig. 1. The band of intensity, diffracted by a sample with height 2S, as seen by a detector with opening 2H and a detector angle 2φ moving in the detector cylinder. The figure is adapted from that of van Laar & Yelon (1984). For angles below $2\varphi_{\min}$, no intensity is seen. For angles between $2\varphi_{\inf}$ and 2θ , the entire sample can be seen by the detector.

GSAS-I Profile Functions #3-5

S/L = sample "half height"/diffractometer radius H/L = slit "half height"/diffractometer radius 6/240 = 0.025 GSAS-I Profile Function #2 (3-5) Thompson-Cox-Hastings pseudo-Voigt

$$\sigma^{2} = GU \tan^{2} \theta + GV \tan \theta + GW + \frac{GP}{\cos^{2} \theta}$$

$$\gamma = \frac{LX + ptec\cos\varphi}{\cos\theta} + (LY + stec\cos\varphi)\tan\theta$$

$$\Delta 2\theta = zero + \left(\frac{f_i asym}{\tan 2\theta}\right) + shft \cos \theta + trns \sin 2\theta$$

NIST SRM 660c LaB₆

GSAS-II

職 GSAS-II project: kadu1814.gpx

File Data Calculate Import Ex	oport Operations	Help				
Project: C:\zjak01\NCC\kadu181	iak01\NCC\kadu181 Histogram Type: PXC Bank: 1					
Notebook	Azimuth: 0.00 Ka1/	Ka2: 0.709260/0.7135	43Å Source type: MoKa 🗸			
Controls	Name (default)	Value	Refine?			
Covariance	I(L2)/I(L1) (0.5800):	0.5				
Constraints	Zero (0.0000);	0.0652				
Restraints	2010 (0.0000).	0.0033				
PWDR kadu 1814 gsas Bank 1	Polariz. (0.5000):	0.5				
Comments	U (33.990):	28.116				
Limits	V (0.000):	0.0				
Background	v (0.000).	0.0				
Instrument Parameters	W (1.704):	1.623				
Sample Parameters Peak List	X (0.000):	0.487				
Index Peak List	Y (0.000):	0.0				
Unit Cells List Beflection Lists	Z (0.000):	0.0				
Phases	SH/L (0.00200):	0.03481				
			1 —			
< >>						
Mouse RB drag/drop to reorder	NB: Azimuth is use	d for polarization on	ly			

– 🗆 X

GSAS-II Instrument Parameter File PANalytical Empyrean/Mo/capillary

#GSAS-II instrument parameter file; do not add/delete items!

I(L2)/I(L1):0.5

SH/L:0.0348141083102

Azimuth:0.0

Lam2:0.713543

Source:MoKa

Zero:0.0652623352976

Lam1:0.70926

U:28.1161839663

W:1.62280279963

V:0.0

Y:0.0

X:0.486972245354

Z:0.0

Type:PXC

Bank:1

Polariz.:0.5

GSAS-II Phase Data

🐝 Instrument Parameters				- 🗆	×	🐝 Phase Data for Cu O		- 🗆	×
File Data Calculate Import Ex	oprt Operations	Help				File Data Calculate Import Exp	ort Select tab Edit Phase Help		
File Data Calculate Import Ex Notebook Controls Controls Constraints Restraints Restraints Rigid bodies PWDR CuO_red_CO_300C-00 Comments Limits Background Instrument Parameters Peak List Index Peak List Unit Cells List Reflection Lists Phases Cu O Cu O	operations Histogram Type: PXC Histogram Type: PXC Name (default) Azimuth: Lam (Å): (0.452410) Zero (0.0000): Polariz. (0.9900): U (21.773): V (27.634): W (12.953): X (0.000): Y (0.000): SH/L (0.00200):	Help C Bank: 1 Value 45.81 0.45241 0.0 0.99 107.52 0.0 15.35 0.102 0.0 0.0005	Refine?			File Data Calculate Import Exp Project: C:\MyFiles\DXC\2017\D Notebook Controls Constraints Restraints Rigid bodies PWDR CuO_red_CO_300C-00 Comments Limits Background Instrument Parameters Sample Parameters Peak List Index Peak List Unit Cells List Reflection Lists Phases Cu O	ort Select tab Edit Phase Help Image: Construction of the second of the se	Is Map peaks ype:	M(►)
Mouse RB drag/drop to reorder	NB: Azimuth is used	d for polarization on	ly			Mouse RB drag/drop to reorder			

Control of Peak Positions

- Lattice parameters
- Specimen displacement
- Specimen transparency
- (Zero)

Specimen Displacement (GSAS-I)

 $\Delta 2\theta = shft\cos\theta$

 $s = \frac{-\pi R shft}{36000}$

Two-Theta (deg)

33.5

Measured and Calculated Specimen Displacements PSN2 2147

Specimen Displacement

Displacement, µm	shift	<i>a</i> , Å
-670	36.79(3)	3.90997(2)
-390	21.25(5)	3.91010(2)
-100	5.56(4)	3.91016(2)
38	-2.06(3)	3.91025(1)
200	-10.78(4)	3.91007(2)
520	-28.57(4)	3.91025(2)
820	-44.75(5)	3.91025(2)
Average		3.9102(1)

🐝 GSAS-II project: kadu937.gpx

File Data Calculate Import E	xport Command Help	
- Project: C:\MyFiles\ICDD_Rietve	Sample and Experimental Parameters	
Notebook	Instrument Name	
Controls	Diffractometer type: Bragg-Brentang	~
Covariance		
Constraints	Histogram scale factor:	806.94
Restraints	Goniometer radius (mm):	240.
Rigid bodies		
PWDR kadu937.gsas Bank 1	✓ Sample displacement(µm):	62.9518
Comments Limits	Sample transparency(1/µeff, cm):	0.0
Background	Surface roughness A:	0.0
Instrument Parameters Sample Parameters	Surface roughness B:	0.0
Peak List	Goniometer omega:	0.
Index Peak List Unit Cells List	Goniometer chi:	0.
Reflection Lists	Goniometer phi:	0.
⊡- Phases Calcium Tartrate Tetrahy	Detector azimuth:	0.
	Clock time (s):	0.
	Sample temperature (K):	300.
	Sample pressure (MPa):	0.1
	Sample humidity (%)	0.
	Sample voltage (V)	0.
	Applied load (MN)	0.

職 GSAS-II project: kadu1814.gpx

- 🗆 X

File Data Calculate Import E	kport Command Help	
□- Project: C:\zjak01\NCC\kadu181	Sample and Experimental Parameters Instrument Name NCC Empyrean	
Controls Covariance	Diffractometer type: Debye-Scherrer	/
Constraints	Histogram scale factor:	480.98
Restraints Rigid bodies	Goniometer radius (mm):	240.
PWDR kadu1814.gsas Bank 1	Sample X displ. perp. to beam (µm):	176.121
Comments Limits	☑ Sample Y displ. to beam (µm):	-6.558
Background	Sample absorption (μ·r):	1.75
Instrument Parameters Sample Parameters	Goniometer omega:	0.
Peak List	Goniometer chi:	0.
Index Peak List Unit Cells List	Goniometer phi:	0.
Reflection Lists	Detector azimuth:	0.
⊞ Phases	Clock time (s):	0.
	Sample temperature (K):	300.
	Sample pressure (MPa):	0.1
	Sample humidity (%)	0.
	Sample voltage (V)	0.
	Applied load (MN)	0.
< >		
Mouse RB drag/drop to reorder		

Specimen Transparency

When the specimen is long enough to intercept the whole beam, and $t \ge \frac{3.2}{\mu} \frac{\rho}{\rho'} \sin \theta$ an additional component of the profile g is generated:

$$g = \exp\left(\frac{4\pi R\varepsilon}{114.6}\sin 2\theta\right)$$
$$-\infty < \varepsilon \le 0 \ (^{\circ})$$

Transparency

- Significant for thick organic specimens
- Additional low-angle asymmetry
- Peak shift to low angles

Extra Low-Angle Asymmetry Peak Shift to Low-Angles

Specimen Transparency GSAS-I

 $\Delta 2\theta = trns\sin 2\theta$

-9000 $\mu_{eff} = \frac{1}{\pi R trns}$

10% RuO₂/SiO₂ Catalyst

Penetration Depth, µm

20, °	28	130
Pure RuO ₂	22	70
10% RuO ₂ /90% SiO ₂	100	340

Instrument Profiles

"Typical values of Rietveld instrument profile coefficients", J. A. Kaduk and J. Reid, *Powder Diffraction*, **26**(1), 88-93 (2011).

Table II. GSAS Function #2 Instrument Profile Parameters for a Variety of Laboratory Diffractometers.

Diffractometer	Date	U	V	W	X	Y	asym
X'Pert Pro PIXcel/0.04 rad Soller	08/2010	0.8048	0	0.5103	2.537	1.946	4.343
D2/Lynxeye	05/2010	1.371	0	2.393	2.183	1.199	2.774
D2/Lynxeye	10/2009	2.8329	0	2.695	1.853	2.488	2.194
X'Pert Pro PIXcel/mono	01/2008	0.7565	0	3.646	2.428	1.902	1.063
X'Pert Pro PIXcel/no mon	01/2008	2.6369	0	0	2.778	0	2.486
D8/VANTEC	04/2004	0.2879	0	1.124	2.477	2.103	2.052
PADV	06/2007	1.0270	0	6.640	1.237	2.693	2.109
D/MAX-B	06/2002	0.567	0	18.680	2.301	1.960	6.048
Miniflex	09/2001	5.568	0	20.47	3.614	0	5.487
PW17xx	08/1998	0	0	5.217	0	9.77	7.603

Table III. GSAS Function #3 Instrument Profile Parameters for a Variety of Laboratory Diffractometers.

Diffractometer	U	V	W	X	Y	S/L	HL
X'Pert Pro PIXcel/0.04 rad Soller	1.423	0	0.5061	2.842	1.509	0.03547	0.00522
D2/Lynxeye	1.376	0	2.640	2.410	0.850	0.02951	0.0005
X'Pert Pro PIXcel/mono	1.153	-0.928	4.161	2.472	1.814	0.01577	0.0005
X'Pert Pro PIXcel/no mon	2.314	0	0	3.040	0	0.02788	0.0005
D8/VÅNTEC	0.3365	0	1.032	2.526	2.051	0.02695	0.0005
PADV	1.103	0	6.412	1.173	2.842	0.03018	0.0005
D/MAX-B	3.219	-7.822	24.370	2.460	1.609	0.03858	0.0005

In all of these profile functions, P=0.

Table IV. GSAS Profile #2 Functionsfor Several Synchrotron Diffractometers

Instr.	Date	U	V	W	X	Y	asym
APS 5-BM-C	10/2002	0.1	0	0	0.2505	0.9462	0
APS 5-BM-C	08/2006	17.1	-8.8	1.3	0	0	0
APS 1-ID	02/2002	0.1	0	0	0.2505	0.9462	0.0646
APS 10-ID-B	01/2000	0.3540	0	0.2908	0.3565	0.5177	0.4744
APS 32-ID	12/2004	0.3120	0	0.0104	0.1186	0.4062	0.0419
LNLS D10B		0.8777	-0.1600	0.1063	0.7604	1.1904	0.5157
NSLS X3B1	03/2004	6.427	-1.067	0	0.6102	0.6796	0.6733

Table V. GSAS Profile #3 Instrument Parametersfor Several Synchrotron Diffractometers

Inst.	Date	U	V	W	Р	X	Y	S/L	H/L
APS 5-BM-C	10/2002	1.212	0	0	0	1.980	0	0.00135	0.00718
APS 1-ID	02/2002	0.1	0	0	0	0.1845	11.190	0.0005	0.00458
APS 10-ID	10/2003	1.212	0	0	0	0.198	0	0.00135	0.00718
APS 11-BMB	02/2009	1.163	-0.126	0.063	0	0.173	0	0.00110	0.00110
APS 32-ID	12/2004	1.212	0	0	0	0.198	0	0.00135	0.00718
AS PD		0.0522	0.5640	0.0621	0	0.293	0.171	0.0000	0.0000
NSLS X7B		0	-125.9	73.3	0	2.03	0	0.0001	0.1000
NSLS X16C		0	0	0	1	3	30	0.014	0.014

GSAS/FullProf Conversions

GU(GSAS) = 1803.4U(FullProf) GV(GSAS) = 1803.4V(FullProf) GW(GSAS) = 1803.4V(Fullprof) GP(GSAS) = 1803.4IG(FullProf) LX(GSAS) = 100Y(FullProf) LY(GSAS) = 100X(Fullprof) S/L(GSAS) = S L(Fullprof) H/L(GSAS) = D L(Fullprof)

(9) (10) (11) (12) (13) (14) (15) (16)

GSAS-II

Instrument Parameters/Operations/Save Profile

More on Size and Strain

Whole powder pattern modelling: microstructure determination from powder data Domain size and domain-size distributions Stress and Strain

Chapters 3.6 (Leoni), 5.1 (Leoni), and 5.2 (Popa) in *International Tables for Crystallography Volume H: Powder Diffraction* (2019).

Williamson-Hall Analysis

$$\beta(d^*) = \frac{K_\beta}{\langle D \rangle} + 2ed^*$$

Integral breadth Volume-weighted average Lorentzian profiles

Fourier Methods (Warren-Averbach, WPPM)

$$h(s) = \int_{-\infty}^{\infty} f(y)g(s-y) \, dy$$
$$s = d^* - d^*_{hkl} = \frac{2}{\lambda}(\sin\theta - \sin\theta_{hkl})$$
$$FT[h(s)] = FT[f(s)] \times FT[g(s)]$$

Texture (Preferred Orientation)

Quantitative texture analysis and combined analysis

D. Chateigner, L. Lutterotti, and M. Morales, Chapter 5.3 in *International Tables for Crystallography Volume H: Powder Diffraction* (2019). File View Options Exercises Help

_ 🗆 ×

Stereographic Projection

http://www.3dsoftware.com/Cartography/USGS/MapProjections/Azimuthal/Stereographic
March-Dollase Function

W. A. Dollase, "Correction of Intensities for Preferred Orientation in Powder Diffractometry: Application of the March Model", *J. Appl. Cryst.*, **19**(4), 267-272 (1986).

March-Dollase Function

$$O_{ph} = \frac{1}{M_p} \sum_{j=1}^{M_p} \left(Ratio^2 \cos^2 A_j + \frac{\sin^2 A_j}{Ratio} \right)^{3/2}$$

 h_p = reciprocal lattice vector M_p = multiplicity of h_p A_j = angle between specified unique axis and h_p Ratio = the refinable parameter "aspect ratio" Cylindrical specimen symmetry assumed

BFDH Morphology - Folic Acid Dihydrate

March-Dollase Function (B-B)

Plates

Ratio < 1

Oblate spheroid

Check consistency with anisotropic broadening!

Needles Ratio > 1Prolate spheroid

Spherical Harmonics Function

R. B. Von Dreele, "Quantitative texture analysis by Rietveld refinement",

J. Appl. Cryst., 30, 517-525 (1997).

Spherical Harmonics Function

$$O_{p}(h, y) = 1 + \sum_{L=2}^{N_{L}} \frac{4\pi}{2L+1} \sum_{m=-L}^{L} \sum_{n=-L}^{L} C_{L}^{mn} k_{L}^{m}(h) k_{L}^{n}(y)$$

Terms depend on crystal and sample symmetry cylindrical 2/m (shear) mmm (rolling) no symmetry

職 GSAS-II project: 3158a_1.gpx

File Data Calculate Import Export | Select tab Edit Phase | Help

Project: C:\zjak01\ICDD_pharm	a General Data Atoms Draw Options Draw Atoms RB Models Map peaks MC/SA RMC Texture Pawley reflections												
Notebook	Histogram data for eltrombopag dioleate:												
Controls	PWDR 11bmb_3158.fxye Bank 1 Select plot type:												
Covariance	() None												
Constraints	OMustrain												
Higid bodies													
PWDR 11bmb 3158.fxve Ba													
Comments	O Preferred orientation												
Limits	O St. proj. Inv. pole figure												
Background	○ Eq. area Inv. pole figure												
Instrument Parameters	Use Histogram: PWDR 11bmb_3158.fxye Bank 1 ? Do new LeBail extraction?												
Peak List	In sequential refinement, fix these in eltrombopag dioleate for this histogram: \sim												
Index Peak List	✓ Phase fraction: 15.7018 Wt. fraction: 1.000												
Unit Cells List Reflection Lists	Domain size model: isotropic V LGmix 1.0 Reset?												
⊡. Phases	size(μm): 1.0												
elfrombopag dioleate	Mustrain model: uniaxial V LGmix 1.0 Reset?												
	Unique axis, H K L: 0 1 0												
	Equatorial mustrain: 1262.6 Axial mustrain: 1859.1												
	Hydrostatic/elastic strain:												
	D11 0.0 D22 0.0 D33 0.0												
	D13 0.0												
	Layer displacement (µm): 0.0												
	Preferred orientation model Spherical harmonics V Harmonic order: 4 V 🗹 Refine?												
	Spherical harmonic coefficients: Texture index: 1.137												
	C(2,-2) -0.479 C(2,0) 0.434 C(2,2) -0.059 C(4,-2) -0.513												
	C(4,-4) -0.137 C(4,0) -0.294 C(4,2) 0.163 C(4,4) -0.277												
	Negative MRD penalty list: Select penalty hkls Zero MRD tolerance: 0.1												
	Extinction: 0.0												
	Babinet A: 0.0 Babinet U: 0.0												
C 2													

Spherical Harmonics

Texture Index

J = 1 for random $J = \infty \text{ for single crystal}$

Texture Index in 11-BM Pharmaceuticals

2-L PET Bottle

5 (C)	PowDL	L Firet	fox G	oogle	Microsoft	🐺 GSAS-II project: bottle.gpx —													- 🗆	×	
	Convert	ter	Cł	nrome	Teams	File	Data Calculate Import Ex	port	Select tab	Texture	Help	0									
			Command	Prompt			Project: C:\MyFiles\ICDD_Rietve	Genera	l Data	Atoms	Draw O	ptions	Draw Atoms	RB N	odels Map	peaks N	MC/SA	RMC	Texture	Pawley refle	ections
		t bottle apy	4010047	05 00 1	БИ	1	Notebook	Spherica	l harmonio	cs texture o	data for P	ET: Textu	re Index J = 285.	341							,
	usas-ii piots	s. bottle.gpx					Controis	Texture r	model: ro	olling - mn	nm ~	Harmon	ic order: 6 🚿	/ 🗹 F	lefine texture?	Shov	v coeff.	?			
Po	wder Patter	rns Texture	e Peak W	/idths			- Constraints Texture plot type: Pole figure to Projection type: Texture plot type: Pole figure														
							Restraints			T one right	-			. cqu	ararca			_			
					transvorse		Rigid bodies	Pole figu	ire HKL:	001			Color scheme	Pair	ed 🗸	Make	CSV file	1			
	Г	_			uansverse	-	PWDR kadu1835.gsas Bank 1	Spherical harmonic coefficients:													
1	120000	- i					Comments	C(2,0,-1)	-2.333		C(2,0,-2)	-2.252	C(2	2,0,0)	4.885	C(2,	0,1) 0.	.085			
1	20000	- i	1				Background	C(2.0.2)	-1.427		C(2.21)	0.877	C	2.22)	0.809	C(2	2.0) -2	2.352			
		1	Į.				- Instrument Parameters	C(2,2,1)	-0.958		((2,2,2))	-1 1/3	C(10-1	-0.434	CIA	0-2)	2 652			
1	100000 -	1	Ŧ				Sample Parameters	C(2,2,1)	-0.550		C(2,2,2)	-1.145		+, 0, - 1)	- 5.434	C(4,	0,-2)	5.055			
		1	ŧ				Peak List	C(4,0,-3)	0.564		C(4,0,-4)	0.826	C(4	1,0,0)	0.584	C(4,	0,1) -(0.515			
	80000 -	1	 ↓ ↓				Index Peak List	C(4,0,2)	9.151		C(4,0,3)	-3.952	C(4	4,0,4)	-1.774	C(4,	2,-1) 2	.791			
5		1	₩.				Reflection Lists	C(4,2,-2)	2.089		C(4,2,-3)	-0.579	C(4	4,2,-4)	1.386	C(4,	2,0) -	1.246			
2		1	11				PWDR kadu1836.gsas Bank 1	C(4,2,1)	-3.86		C(4,2,2)	-11.243	C(4	1,2,3)	3.26	C(4,	2,4) 1.	.214			
ັນ	60000 -	1	11				Comments	C(4,4,-1)	2.266		C(4,4,-2)	-0.82	C(4	1.43)	-1.424	C(4,	44) -1	1.532			
E		1	11				Limits	C(4.4.0)	-0.514		C(AAI)	2 /27	CU.	142	5 374	CIA	43)	050			
-	40000 -	1	11				Background	C(4,4,0)	1.44		C(4,4,1)	15.915	C(-	· · · · ·	2.615	0(4,	-,-) -·	0.000			
		1	11				Sample Parameters	C(4,4,4)	1.44		C(0,0,-1)	-15.315		5,0,-2)	-3.010	C(0,	0,-3) -4	2.988			
	20000	1	11				Peak List	C(6,0,-4)	-2.613		C(6,0,-5)	8.203	C(6	5,0,-6)	1.822	C(6,	0,0) -6	5.189			
	20000 1	Т.,	/ \				Index Peak List	C(6,0,1)	6.696		C(6,0,2)	9.255	C(6	5,0,3)	-11.466	C(6,	0,4) 2.	.469			
							Unit Cells List	C(6,0,5)	2.425		C(6,0,6)	-1.016	C(6	5,2,-1)	12.039	C(6,	2,-2) 0.	.972			
	0+							C(6,2,-3)	-7.382		C(6,2,-4)	2.664	C(6	5,2,-5)	1.547	C(6,	2,-6) -(0.151			
	L				· · ·	-	Phases	C(6.2.0)	1,422		C(6.2.1)	-13.2	CIE	522)	-7.664	C(6	2 3) 0	.166			
			10	2	20 30		PET	C(6.2,4)	2 929		C(6.2.5)	-25 044		26	7 600	C(6,	4-1)	2 11			
					20			C(0,2,4)	2.030		C(0,2,3)	-23,044		,2,0)	1.009	C(0,	-,) -4				
	4 -	<u>ــــــــــــــــــــــــــــــــــــ</u>	0		2 < 2			C(6,4,-2)	0.609		C(6,4,-3)	4.851	C(6	0,4,-4)	-1.424	C(6,	4,-5) -	15.144			
	v	• ·t·	~				>	C(6,4,-6)	-0.179		C(6,4,0)	4.26	C(6	5,4,1)	9.981	C(6,	4,2) 5.	.944			
			histogram:	PWDR kad	du1836.gsas Bank 1	Mous	se RB drag/drop to reorder														

Texture in HDPE Pipe

