An Introduction to ICDD and the Powder Diffraction File

James A. Kaduk

Poly Crystallography, Inc., Naperville IL 60540

kaduk@polycrystallography.com

History

- Hanawalt, J. D. & Rinn, H. W. (1936). *Identification of crystalline materials*. *Ind. Eng. Chem. Anal. Ed.* **8**, 244-247, reprinted in (1986) *Powder Diffraction* **1**, 2-6.
- Hanawalt, J. D., Rinn, H. W. & Frevel, L. K. (1938). *Chemical analysis by X-ray diffraction. Ind. Eng. Chem. Anal. Ed.* **10**, 457-512, reprinted in part in (1986) *Powder Diffraction* **1**, 7-14.
- 1941 Joint Committee for Chemical Analysis by Powder Diffraction Methods, supported by Committee E-4 of the American Society for Testing and Materials (ASTM)
- 1969 independent non-profit Joint Committee on Powder Diffraction Standards (JCPDS).
- 1978 name change to the International Centre for Diffraction Data

Products and Services

- PDF-2 (5 year) 316,820 entries (2021)
- PDF-4+ (annual) 444,133 (2021)
- PDF-4 Organics 547,295 (2021)
- WebPDF-4, PDF-4 Minerals (48,946), PDF-4/Axiom (97,789)
- SIeve/SIeve+
- Powder Diffraction, Advances in X-ray Analysis
- Denver X-ray Conference, Pharmaceutical Powder Diffraction Symposium
- Clinics and Workshops
- Grant-in-Aid

MDI JADE V7.5.0 @2/27/2019

Initializing & Loading Main Form ...

- License Acquired (Server: This PC)
- C:\MyFiles\Clinic\2019\ramm136.raw

Materials Data

285 Days

Powder XRD Analysis

😞 😵 🖨 🔯 🙇 ý

Open PDF Cards Preferences Search History Results SIeve+ Microanalysis

-					
	-	-	~	ь	
-	c	σ	c		

• Search																				
						💡 Subfile 🔻								🕰 Environn	nent	🖌 Status	🚖 Qua	lity Mark		Database
Custom PDF	Set												^	Ambient		Primary	Star			00)
Alkaloid														Non-ambien	t	Alternate	Good			1)
Battery Material	tide & Complex													Temp.		Deleted	Indexed		CSD (0)	2)
Bioactive														Press.			 Calculate 	d		3)
No Subclass														Temp &	Drecc		Prototype Minimal A	ng		
Depressant														Temp, o	11035		 Blank 	cceptable		vistal Data (05)
Pesticide & A	Antimicrobial																Low-Precession	ision		rystai Data (05)
Psychotropic														Atomic Coor	dinates 🐺		Hypothet	ical		
Stimulant													•	Raw Diffrac	tion Data 📸					
Periodic Table		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Formula/Name		1		Boolean			position Diagr	amlist											2	
Classifications	1	1.008		and o				L											пе 4003	
Crystallography		3	4 Be			Grouping.								5 B	6 C	7 N	8 O	9 F	10 No	
Crystallography	2	6.941	9.012		Just	And		a.						10.811	12.01	14.007	15,999	18.998	20,180	
Modulated	-	11 Na	12 Ma			,	1							13 Δ Ι	¹⁴ Si	15. P	¹⁶ S	17 CI	18 Ar	
Diffraction	2	22.990	24.305											26.962	28.096	30.974	32.065	35.453	39.948	
Physical Properties	4	¹⁹ K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	³⁶ Kr	
rnysicarrioperaes	-	39.098	40.078	44.956	47.867	50.941	51.996	54.938	55.845	58.993	58.693	63.546	65.409	69.723	72.64	74.922	78.96	79.904	83.798	
Reference	5	37 Rb	³⁸ Sr	³⁹ Y	40 Zr	41 Nb	42 Mo	⁴³ Tc	44 Ru	45 Rh	Pd	47 Ag	⁴⁸ Cd	⁴⁹ In	Sn 50	51 Sb	52 Te	53	⁵⁴ Xe	
Comments		85.468	87.62	88.906	91.224	92.906	95.94	[98]	101.07	102.906	106.42	107.868	112.41	114.818	118.71	121.76	127.6	126.904	131.293	
	6	Cs	ва		" Hf	Та	Ŵ	Re	Os	í lr	"Pt	Au	ື Hg	TI	The Pb	Bi	Po	At	[™] Rn	
		132.905	137.327		178.49	180.948	183.84	186.207	190.23	192.217	195.078	196.967	200.59	204.383	207.2	208.98	[209]	[210]	[222]	
	7	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og	
		[223]	[226]	57	[261]	[262]	[266]	[264]	[277]	[268]	[271]	[272]	[285] 66	[286]	68	[289]	[293]	[294] 71	[294]	
	La			La 138.906	Ce 140.116	Pr 140.908	Nd 144.242	Pm [145]	Sm 150.36	Eu 151.964	Gd 157.25	Tb 158.925	Dy 162.5	Ho 164.93	Er 167.259	Tm 168.934	Yb 173.04	Lu 174.967		
	4.0			Ac	90 Th	Pa Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103		
	AL			[227]	232.038	231.036	238.029	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]		
🔍 Search	Reset Tab	Reset All	Help	Range Input 🖲	Global Oper	ator 🔻														
🚷 Search			,																	

 $\begin{array}{c} Ag_{0.8}Cu_{0.2}Bi_3S_5?\\ Ag, Cu, Bi, S \text{ only} \end{array}$

File Edit Window Help

Open PDF Cards Preferences Search History Results SIeve+ Microanalysis

Search

				💡 Subt	île ▼			Environment	🖌 Status	🚖 Quality Mark	Database
Custom PDF S Alkaloid Amino Acid, Peptic Battery Material Bioactive Depressant Marcotic Pesticide & An Psychotropic	Set de & Complex ntimicrobial						^	Ambient Non-ambient Temp. Press. Temp. & Press. Atomic Coordinates	Primary Alternate Deleted	 Star Good Indexed Calculated Prototyping Minimal Acceptable Blank Low-Precision Hypothetical 	ICDD (00) ICSD (01) CSD (02) NIST (03) LPF (04) ICDD Crystal Data (05)
Stimulant	<i>c</i>						~	Raw Diffraction Data 📸			
Periodic Table Formula/Name	Formula ▼ Any Formula										
Classifications	Name V Any Name										
Crystallography	IMA No.										
Modulated											
Diffraction	CAS Number										
Physical Properties	Number of Elemer	nts									
Reference	Low	High									
Comments	Composition V	•									
	Element	Weight %	± Error								
🔍 Search 🛛 F	Reset Tab Re	eset All Help	Range In	put 🔻 Global Operator 🔻	[Only (Cu And Ag And Bi And S)] And [Status ((Primary, Alternate)]					
🚷 Search											

Herbertsmithite

Name + Ambient + Coordinates

File Edit Window Help

Open PDF Cards Preferences Search History Results SIeve+ Microanalysis

Search

Search							
	💡 Subfile 🔻		1	🖾 Environment	🖌 Status	🚖 Quality Mark	Database
Custom PDF Se Alkaloid Alkaloid Bioactive No Subclass Depressant Narcotic Pesticide & Ant Pesticide & Ant 	et le & Complex timicrobial			Ambient Non-ambient Temp. Press. Temp. & Press. Atomic Coordinates	Primary Alternate Deleted	 Star Good Indexed Calculated Prototyping Minimal Acceptable Blank Low-Precision Hypothetical 	ICDD (00) ICSD (01) CSD (02) NIST (03) LPF (04) ICDD Crystal Data (05)
Periodic Table	Mineral Classification 🔻	Zeolite Classification 🔻		Organic Functi	onal Group 🔻		
Formula/Name	AEN - Aenigmatite (group)	ABW - Li-A(BW) ACO - ACP-1 AET - AIPO4-18		>4_Hetero_at >5_fused_ring >9_memberer	oms_in_ring(s) ps		^
Classifications	B-ALM - Alum (group)	AEL - AIPO4-11		1_Hetero_ato	m_in_ring(s)		
Crystallography	ALN - Alunite (supergroup) AMB - Amblygonite (group)	AEN - AIPO-EN3 AET - AIPO4-8		1,2_dione 2_fused_rings	_0=C-C=0		
Modulated	AMP - Amphibole (family) ANC - Analcime (supergroup)	AFG - Afghanite AFT - AIPO4-5		2_Hetero_ato 3 fused rings	ms_in_ring(s)		
Diffraction	ANY - Ancylite (supergroup) ADA - Andalusite (group)	AFN - AIPO-14 AFO - AIPO4-41		3_Hetero_ato 3_membered_	ms_in_ring(s) ring		
Physical Properties	E -ANT - Antlerite (group) E -APA - Apatite (group)	AFR - SAPO-40 AFS - MAPSO-46		4_fused_rings 4_Hetero_ato	ms_in_ring(s)		
Reference	APH - Aphthitalite (supergroup)	AFT - AIPO4-52		4_membered_	ring		
Comments	ARA - Aragonite (group)	АГУ - CoAPO-50 АГУ - CoAPO-50 АНТ - АРО-4-H2		5_membered_	ring		~
	Pearson Symbol ▼ With Hydrogen Prototype Structure ▼ Any Prototype Structure Formula Type (ANX) ▼ 						

Reset All Help 🔍 Search Reset Tab

Range Input 🔻 Global Operator 🔻

🚷 Search

Zeolite MFI

File Edit Window Help

Open PDF Cards Preferences Search History Results SIeve+ Microanalysis

Search

Image: Subject State Image: Subject State <td< th=""><th>🖲 Search</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	🖲 Search													
-Alada					💡 Subfile 🔻						🖎 Environment	🖌 Status	🚖 Quality Mark	Database
Aradod Arino Ado, Peptde & Complex Britery Material Boactive Boactive Britery Material Boactive Britery Material Depresent Depresen	Custom PDF Se	et								^	Ambient	Primary	Star	ICDD (00)
Partice Markend Image: Control of Control	Alkaloid	la & Complay									Non-ambient	Alternate	Good	ICSD (01)
Image: State in the state	Battery Material	le a complex									Temp.	Deleted	 Indexed 	CSD (02)
Orgenseat Period: Table Orgenseat Period: Table Orgenseat Orgenseat Period: Table Orgenseat	- Bioactive										Press.		Calculated	NIST (03)
Period: Table Atomic Coordinates Period: Table Period: Table Crystal System Crystal System Crystal System Crystal Control Choice Crystal Control Control <th>No Subclass</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Temp. & Press.</th> <th></th> <th>Minimal Acceptable</th> <th>LPF (04)</th>	No Subclass										Temp. & Press.		Minimal Acceptable	LPF (04)
Perioda 8.Artimicrobial Perioda: Table Crystal System Christina Kanto Cessifications Crystal System Spece Group Number Spece Group Number Value # Error Spece Structure Value # Error Spece Structure Value # Error Value # Error <th></th> <th>Blank</th> <th>ICDD Crystal Data (05)</th>													Blank	ICDD Crystal Data (05)
Periodic Table Cystal System Cystal System Cystal System Centrosymetric Pornula/Nane Intinic (Anorthic) Rhombohedral Centrosymetric Basin Coda Cubic Centrosymetric Image: Cubic Cossifications Orthorhombic Cubic Enantionorphic Cystal System Cubic Enantionorphic Pyro / Piezo (p) Providated Orthorhombic Cubic Enantionorphic Cystal System Cubic Enantionorphic Pyro / Piezo (p) Space Group Number Space Group Number Space Group Number Cystal Data Axis (Å) Axia Rato Volue # Error (4) Yalue Nended Cell Aithor's Unit Cell Systerel/Subeel # Error Comments % Value Yell # Error Yell <td< th=""><th>Pesticide & Ant</th><th>timicrobial</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Atomic Coordinates</th><th></th><th>Low-Precision</th><th></th></td<>	Pesticide & Ant	timicrobial									Atomic Coordinates		Low-Precision	
Period: Table Crystal System Crystal (Symmetry Allowed) V Atomic Environment Type Formula/Name Intidinic (Anorthic) Rhombohedral Centrosymmetric: Symbol Classifications Orthorhombic Lobic Enantomorphic Pyro / Piezo (p) Modulated Space Group V Enantomorphic Piezo (2nd Harm.) Azia Paio Diffraction Crystal Data Axia (Å) Axia Ratio Volume Physical Properties axia (Å) Axia Ratio Volume Reference axia (Å) Value #Error Gi Value Comments bi Value #Error gi Value #Error Value #Error y: Value #Error Yei Value #Error	Psychotropic									~	Dem Differentiere Date		Hypothetical	
Periodc Table Crystal System Crystal System Crystal System Crystal System Pormula/Name Triclinic (Anorthic) © Rhombohedral @ Monodnic Exagonal Controsymmetric Symbol Classifications Orthorhombic Cubic Enantionorphic Pyro / Piezo (p) Crystal/graphy Tetragonal Optical Activity Piezo (2nd Harm.) Action Modulated Space Group Number Space Group Number Offraction Action Action Physical Properties Reduced Cell axis (Å) Axial Ratio Volume Reference Action & Space Group Number s: Value #Error Value Comments Space Croup Number s: Value #Error Value Value #Error Visue #Error Value	Stimulant											3		
Formula/Name Inidinic (Anorthic) Rhomobnérafal Centrosymmetric Glassifications Orthorhombic Oubic Bnantiomorphic Crystallographi Initiation Optical Activity Piezo (2n) Modulated Space Group Number Optical Activity Piezo (2n) Physical Properties Crystal Data Axis (Â) Axia Ratio Nenderic e Error Space Group Number Space Group Number Value ± Error C/alue Value ± Error Space Value ± Error Space Value ± Error Value Value ± Error	Periodic Table	Crystal System	_	Crystal (Symmetry Allov	ved) 🔻	Ator	mic Environmen	t Type						
Image: Constant of the sequence of	Formula/Name	Triclinic (Anorthi	c) Rhombohedral	Centrosymmetric		1#2		A						
Classifications Orthorhombic Cubic Interragonal Optical Activity Poptical Properties Reference Axis (Å) Axis (Å) Axis (Å) Axia (Å) Y Y Y Y Y Y Y Y Y Y		Monoclinic	Hexagonal	Non-centrosymmetri	ic:	2#2	a Ag							
Crystallography Modulated Diffraction Physical Properties Reference Supcrell/Subce? Comments Ari Value ±Error	Classifications	Orthorhombic	Cubic	Enantiomorphic	Pyro / Piezo (p) 2#t	Al Al							
Modulated Space Group V Diffraction Space Group Number Physical Properties Crystal Data Axis (Â) Axia Ratio Volume Redreed Cell Author's Unit Cell a: Value ± Error c/a: Value ± Error Value ± Error Comments C Value ± Error a/b: Value ± Error v/a Value ± Error Comments Value ± Error v/a Value ± Error v/a Value ± Error	Crystallography	Tetragonal		Optical Activity	Piezo (2nd Ha	arm.) 3#a 3#b	Am Ar	¥						
Diffraction Space Group Number Space Group Number Physical Properties Crystal Data Reduced Cell Author's Unit Cell Supercell/Subbel Axis (Â) Axis (Â) Axis (Â) Comments Comments Value ± Error oi< Value ± Error oi< Value ± Error Value ± Error pi< Value ± Error pi< Value ± Error Value ± Error pi< Value ± Error pi< Value ± Error	Modulated	Space Group 🔻 —								 				
Physical Properties Crystal Data Axis (Å) Axial Ratio Volume Reduced Cell a: Value ±Error a: Value ±Error Value ±Error Author's Unit Cell Author's Unit Cell Supercell/Subcell b: Value ±Error a/b: Value ±Error Value ±Error V Value ±Error a/b: Value ±Error Value ±Error V Value ±Error Value ±Error	Diffraction	Space Group Numb	er											
Reference Author's Unit Cell Supercell/Subcell Author's Unit Cell Supercell/Subcell Author's Unit Cell Supercell/Subcell B: Value ± Error a/b: Value ± Error Comments ·	Physical Properties	Crystal Data Reduced Cell	Axis (Å) a: Value ± Ei	ror g : Value	± Frror	Axial Ratio	± Error	Volume Value	± Error					
Comments c: Value ± Error V: Value ± Error	Reference	Author's Unit Cell	b: Value ±E	ror β: Value	± Error	a/b: Value	± Error							
	Comments	Supercell/Subcell	C: Value + Fi	ror V: Value	+ Error	c/b: Value	± Error	_						
			TOUL	, Value	- LI UI	- unore								
Image: Search Reset Tab Reset All Help Range Input ▼ Global Operator ▼	🔍 Search 🛛 R	Reset Tab Rese	t All Help R	ange Input 🔻 Global Ope	rator 🔻									
	Const.									 				

Author's Unit Cell *P*-orthorhombic a = 9.623, b = 10.565, c = 9.219Change esd on volume to 10 Å³

File Edit Window Help

Search

Search				
Subfile 🔻	🖎 Environment	🗸 Status	🚖 Quality Mark	Database
Custom PDF Set	Ambient	Primary	Star	ICDD (00)
Alkaloid	Non-ambient	Alternate	Good	ICSD (01)
Amino Acid, Peptide & Complex	Temp.	Deleted	Indexed	CSD (02)
Bioactive	Press.		 Calculated 	NIST (03)
No Subclass	Temp & Press		Prototyping Minimal Acceptable	
Depressant	Temp, arress.		Blank	
Pesticide & Antimicrobial			Low-Precision	
Psychotropic	Atomic Coordinates		Hypothetical	
Stimulant	Raw Diffraction Data 📸			
Periodic Table Modulated Dimension				
Eormula/Name				
Subsystems				
Classifications Modulated Structure (One Subsystem) Composite Structure (Multiple Subsystems)				
Crystallography				
Modulated				
Diffraction				
Physical Properties				
Reference				
Comments				
Image: Search Reset Tab Reset All Help Range Input ▼ Global Operator ▼				

🗐 PDF-4+ 2019		- c	J X
File Edit Window	Help		
Open PDF Cards Pre	eferences Search His	Istory Results SIeve + Microanalysis	
😒 Na3.919 (C O3)	2 - 05-001-0286		
File Plots Help			
Export V Print To	emperature Series To	Image: Comparison of the second se	
X-ray Diffraction	ı	Simulated Profile (Calc)	^
Wavelength: Cu	ustom 🗸 Ka1: 0.	.709318: Raw Diffraction Data 100	
O Neutron Diffract	tion	Fixed Slit Intensity V 80	
Electron Diffract	tion		
2 0 (°)	d (Â) I	h k l m * 4	
2.82640	14.38051 1	0 0 1 -2 ^ = 40	
9.06742	4.48677 10		
9.08515	4.47803 1		
10.50935	3.87255 27		
10.83208	3.75750 55		
11.92629	3.41384 133m	0 0 3 -4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	39
11.92629	3.41384 133m	1 1 1 0 20 (°)	×
12.03939	3.21003 104		>
PDF	Status:	Primary Quality Mark: O Star	
Experimental	Environment:	Ambient Temperature: 293.0 K Pressure: -	
Physical	Phase:	-	
Crystal	Chemical Formula:	: Na _{3,919} (CO ₃) ₂	
Structure	Structural Formula	a: _	
Classifications	Empirical Formula:	: C ₂ Na _{3,919} O ₆	
Classifications	Weight %:	C11.43 Na42.88 O45.69	
Cross-references	Atomic %:	C16.78 Na32.88 O50.34	
References	Compound Name:	: Sodium Carbonate	
Comments	Mineral Name:	Natrite IMA No: 1981-005	
	Alternate Name:		
	CAS Number:	-	
	Entry Date:	09/01/2014	

Modification Date: 09/01/2015 Modifications: Dx

🚷 Search 🔋 Na3.919 (C O3)2 - 05-00...

 Image: Search History Results
 Im

File Edit Window Help

Search						
Custom PDF S Alkaloid Anino Acid, Peptir Battery Material Bioactive No Subclass Depressant Narcotic Pesticide & Ar 	Set de & Complex	e ▼	Environment Ambient Non-ambient Temp. Press. Temp. & Press. Temp. & Press. Raw Diffraction Data	Status Primary Alternate Deleted	 Quality Mark Star Good Indexed Calculated Prototyping Minimal Acceptable Blank Low-Precision Hypothetical 	 Database ICDD (00) ICSD (01) CSD (02) NIST (03) LPF (04) ICDD Crystal Data (05)
Periodic Table		Radiation: X-ray/Electron CW Neutron		1		1
Formula/Name Classifications	Strong Line (Å) ▼ Value ± Error ☑ D1 ☑ D2 ☑ D3	Long Line (Å) ▼ Value ± Error ✓L1 ✓L2 ✓L3				
Crystallography Modulated	Reported Intensity Integrated Intensities I/I-corundum					
Diffraction Physical Properties	Value ± Error					
Reference	Value ± Error					
Comments	Smith-Snyder Figure of Merit ▼ Value ± Error					
	Temperature of Data Collection (K) Value ± Error	Pressure of Data Collection (GPa) Value ± Error) ▼			
🧟 Search 🛛 🛛	Reset Tab Reset All Help Range Input ▼ Global Operator ▼					
🚷 Search						

File Edit Window Help

Open PDF Cards Preferences Search History Results SIeve+ Microanalysis

Search

Search				
💡 Subfile 🔻	🖎 Environment	🗸 Status	🚖 Quality Mark	📑 Database
Custom PDF Set	Ambient	Primary	Star	ICDD (00)
Alkaloid	Non-ambient	Alternate	Good	ICSD (01)
Amino Acid, Peptide & Complex	Temp.	Deleted	Indexed	CSD (02)
Bioactive	Dress		 Calculated 	
No Subclass	FICSS.		 Prototyping 	
Depressant	Temp. & Press.		Minimal Acceptable	LDF (04)
Narcotic		<u> </u>	Blank	ICDD Crystal Data (05)
Pesticide & Antimicrobial	🗌 Atomic Coordinates 🗱		Unothetical	
Stimulant	Raw Diffraction Data		пуротнецса	
Melting Point (A)				'
Periodic Table Volvo				
Formula/Name				
Density (g/cm³) ▼				
Classifications Value ± Error				
Crystallography Measured Density Calculated Density Structural Density				
Modulated Color V				
Diffraction Blue				
Physical Properties Color Missing				
Colorless Reference Gray				
Green				
Coninertis Metallic				
Pink				
Red				
Violet				
White v				
Property Sheet				
Topology Data				
Image: Search Reset Tab Reset All Help Range Input ▼ Global Operator ▼				
Search				

File Edit Window Help

Search

Search					
	💡 Subfile 🔻	🖎 Environment	🖌 Status	🚖 Quality Mark	📑 Database
Custom PDF Se	et 🔨	Ambient	Primary	Star	ICDD (00)
Alkaloid		Non-ambient	Alternate	Good	ICSD (01)
Amino Acid, Peptide	e & Complex	Temp.	Deleted	Indexed	CSD (02)
-Bioactive		Press.		 Calculated 	NIST (03)
No Subclass		Temp & Press		 Prototyping Minimal Accentable 	
Depressant		remp. arress.		 Blank 	
Pesticide & Ant	timicrobial			Low-Precision	
Psychotropic		Atomic Coordinates		Hypothetical	
Stimulant	· · · · · · · · · · · · · · · · · · ·	Raw Diffraction Data 📸			
Periodic Table	Search All References Search Primary Reference				
Formula/Name					
Classifications					
Countelle souschu					
Crystallography					
Modulated	Author V				
Diffraction					
Physical Properties	Publication V				
rnyaicurroperuea	Journal/Patent				
Reference	Volume V				
Comments					
	Year				
	Start Year End Year				
🔍 Search 🛛 R	eset Tab Reset All Help Range Input ▼ Global Operator ▼				

– 0 ×

🚷 Search

Search your own surname

File Edit Window Help

Sec.

a Search					- F ×
 Search Custom PDF Set Alkaloid Amino Acid, Peptide & Complex Battery Material Bioactive No Subclass Depressant Narcotic 	Subfile V	Environment Ambient Non-ambient Temp. Press. Temp. & Press.	 Status Primary Alternate Deleted 	Quality Mark Calculated Prototyping Minimal Acceptable Blank	Database ICDD (00) ICSD (01) CSD (02) NIST (03) LPF (04) ICDD Crystal Data (05)
Stimulant	~	Atomic Coordinates 🗱	á	Hypothetical	

Periodic Table	Database Comments V
Formula/Name	
Classifications	Absolute Configuration Additional Diffraction Lines
Crystallography	Additional Patterns Analysis
Modulated	ANX Atomic Position
Diffraction	Bioactivity Boiling Point
Physical Properties	Calculated Pattern Original Remarks
Reference	
Comments	
🔍 Search 🛛 R	eset Tab Reset All Help Range Input ▼ Global Operator ▼

🚷 Search

ICSD Collection Code 88605

File Edit Window Help

– 0 ×

 Image: Search History
 Image: Search History

🔹 Microanalysis							
File Help							
Element/Oxide Weight % 🔻	±Error (%):	5.0 ~	💱 Set Filter				
Mg x 3 x 💥	Ignore Elements:	None v	[Status (Primary)	, Alternate	=)]		
		Matches ((8,602 of 397,421)				
	GOM (WA) 🐣	GOM (UWA)	PDF #	QM	Weight %	Compound Name Mineral Name	me
	49.83%	99.67%	00-019-0519	\varTheta В	Au97.01 Mg2.99	Gold Magnesium	
	49.83%	99.67%	04-001-3003	💛 P	Au97.01 Mg2.99	Gold Magnesium	
	49.83%	99.67%	04-004-4093	😐 P	Au97.01 Mg2.99	Gold Magnesium	
	46.88%	93.75%	00-056-1208	🔴 B	Mg3.20 W96.80	Magnesium Tungsten	
	45.17%	90.33%	04-017-8497	9 I	Ag97.29 Mg2.71	Magnesium Silver	
	42.98%	85.96%	01-074-5964	🥚 I	Mg3.49 Sn96.51	Magnesium Tin	
	42.98%	85.96%	04-003-2216	😐 I	Mg3.49 Sn96.51	Magnesium Tin	
	40.00%	80.00%	03-065-6701	🥚 I	Au96.25 Mg3.75	Gold Magnesium	
	39.79%	79.58%	00-020-0456	😐 I	Au96.23 Mg3.77	Gold Magnesium	
	39.79%	79.58%	04-007-2004	😐 I	Au96.23 Mg3.77	Gold Magnesium	
	39.17%	78.33%	01-071-6824	9 I	Cd97.65 Mg2.35	Cadmium Magnesium	
	38.33%	76.67%	04-001-0474	💛 I	In97.70 Mg2.30	Indium Magnesium	
	37.97%	75.95%	00-019-0518	● I	Au96.05 Mg3.95	Gold Magnesium	
	37.97%	75.95%	00-024-0461	😐 I	Au96.05 Mg3.95	Gold Magnesium	
	37.97%	75.95%	01-072-5352	● I	Au96.05 Mg3.95	Gold Magnesium	
	37.97%	75.95%	04-007-1482	🔴 В	Au96.05 Mg3.95	Gold Magnesium	
	37.97%	75.95%	04-007-1483	🥚 В	Au96.05 Mg3.95	Gold Magnesium	
	37.97%	75.95%	04-019-4954	<u> </u>	Au96.05 Mg3.95	Gold Magnesium	V
	GOM (WA): 49 ₩g).83% ● GOM (UV	VA): 99.67%				Au
4 6 📋	0 5	10	15 20		25 30 35 4	0 45 50 55 60 65 70	75 80 85 90 95 100
Search Reset Paste						Weight %	
Search 🔯 Micro	analysis						

Boolean Searches

Ca,Mg,C,O only and space group #167 and ambient

I 😵 😓 ¥

Q Open PDF Cards Preferences Search History Results SIeve+ Microanalysis

& Results - 10 of 412,083

File Fields Tools Help

Open PDF Card M Simulated Profile

PDF #	QM	Chemical Formula	Compound Name	Mineral Name	D1 (Å)	D2 (Å)	D3 (Å)	SYS	Auth SPGR	XtlCell a (Å)	XtlCell c (Å)	AuthCell Vol (Å3)	L1 (Å)
🚖 00-043-0697	🥥 S	👔 (Ca, Mg) C O ₃	Calcium Magnesium Carbonate	Calcite, magnesian	3.004200	1.889150	2.262510	R	R-3c	4.943	16.852	356.53	3.8204
00-060-0473	● I	(Ca, Mg)(CO ₃)	Calcium Magnesium Carbonate		3.008920	1.860030	2.267010	R	R-3c	4.955	16.898	359.24	3.8240
01-086-2336	🔵 S	(Mg _{0.129} Ca _{0.871})(CO ₃)	Magnesium Calcium Carbonate	Calcite, magnesian	2.999470	2.259940	1.853450	R	R-3c	4.938	16.832	355.47	3.8126
01-089-1304	🔵 S	(Mg _{0.03} Ca _{0.97})(CO ₃)	Magnesium Calcium Carbonate	Calcite, magnesian, syn	3.025470	1.869360	1.904940	R	R-3c	4.978	16.988	364.57	3.8442
01-089-1305	🔵 S	(Mg _{0.06} Ca _{0.94})(CO ₃)	Magnesium Calcium Carbonate	Calcite, magnesian, syn	3.018190	1.864700	1.901030	R	R-3c	4.963	16.957	361.72	3.8336
04-008-8067	🔴 В	Ca _{0.9} Mg _{0.1} (CO ₃)	Calcium Magnesium Carbonate	Calcite, magnesian	3.002300	1.890090	1.855100	R	R-3c	4.941	16.854	356.34	3.8153
04-012-6929	🔵 S	Ca _{0.845} Mg _{0.155} (C O ₃)	Calcium Magnesium Carbonate		3.025480	1.869370	2.278600	R	R-3c	4.978	16.988	364.57	3.8442
04-012-6930	🔵 S	Ca _{0.715} Mg _{0.285} (CO ₃)	Calcium Magnesium Carbonate		3.018190	2.272170	1.864700	R	R-3c	4.963	16.957	361.72	3.8336
04-013-2116	🔵 S	Ca _{0.936} Mg _{0.064} (C O ₃)	Calcium Magnesium Carbonate	Calcite, magnesian	3.020030	1.865910	1.901900	R	R-3c	4.967	16.963	362.47	3.8365
04-019-9173	😐 P	Ca _{0.758} Mg _{0.242} (CO ₃)	Calcium Magnesium Carbonate		2.965820	2.238700	1.833360	R	R-3c	4.896	16.600	344.60	3.7759

<

~

My Defaults

>

_ D ×

My Defaults

¥ \bigcirc Ŷ Open PDF Cards Preferences Search History Results SIeve+ Microanalysis

& Results - 7* of 412,083 - 3 entries removed by user

File Fields Tools Help

<

Open PDF Card 🔀 Simulated Profile

PDF #	OM	Chemical Formula	Compound Name	Mineral Name	D1 (Å)	D2 (Å)	D3 (Å)	SYS	Auth SPGR	XtlCell a (Å)	XtlCell c (Å)	AuthCell Vol (Å3)	L1 (Â)
* 00-043-0697	S	🚹 (Ca, Mg) C O3	Calcium Magnesium Carbonate	Calcite, magnesian	3.004200	1.889150	2.262510	R	R-3c	4.943	16.852	356.53	3.8204
01-086-2336	S	(Mg _{0.129} Ca _{0.871})(CO ₃)	Magnesium Calcium Carbonate	Calcite, magnesian	2.999470	2.259940	1.853450	R	R-3c	4.938	16.832	355.47	3.8126
01-089-1304	🔵 S	(Mg _{0.03} Ca _{0.97})(CO ₃)	Magnesium Calcium Carbonate	Calcite, magnesian, syn	3.025470	1.869360	1.904940	R	R-3c	4.978	16.988	364.57	3.8442
01-089-1305	🔵 S	(Mg _{0.06} Ca _{0.94})(CO ₃)	Magnesium Calcium Carbonate	Calcite, magnesian, syn	3.018190	1.864700	1.901030	R	R-3c	4.963	16.957	361.72	3.8336
04-008-8067	🔴 В	Ca _{0.9} Mg _{0.1} (C O ₃)	Calcium Magnesium Carbonate	Calcite, magnesian	3.002300	1.890090	1.855100	R	R-3c	4.941	16.854	356.34	3.8153
04-013-2116	🔵 S	Ca _{0.936} Mg _{0.064} (C O ₃)	Calcium Magnesium Carbonate	Calcite, magnesian	3.020030	1.865910	1.901900	R	R-3c	4.967	16.963	362.47	3.8365
04-019-9173	😐 P	Ca _{0.758} Mg _{0.242} (CO ₃)	Calcium Magnesium Carbonate		2.965820	2.238700	1.833360	R	R-3c	4.896	16.600	344.60	3.7759

[Environment (Ambient)] And [Only (Mg And Ca And C And O)] And [Space Group Number Is 167] And [Status (Primary, Alternate)]

~

>

A Case Study: The 6H Perovskite Ba₃CaSb₂O₉

Chris Ling The University of Sydney

Data from 1-BM-C C2/c, a = 5.99898(7), b = 10.37797(19), c = 14.8658(3) Å, $\beta = 91.384(2)^{\circ}, V = 925.23(3)$ Å³

There are peaks unaccounted for:

20	$d (\lambda = 1.182279 \text{ Å})$	Intensity
22.87	2.9817	400
28.05	2.4392	70
28.44	2.4065	60
31.63	2.1619	150
32.51	2.1118	300
40.14	1.7226	260
46.70	1.4915	140
52.58	1.3346	110
55.04	1.2794	80

 Image: Search History
 Image: Search History

Sleve+ -	(Untitled)																				245
File Help																		Rad	liation: X-ray	y (0.7093187	Á)
💋 Import	1D Diffraction Patter	n 😵 Accept P	hase	Search Method:	Hanawalt \lor	Weight d	-Spacings	💡 Set Filter	🍖 Insert PDF	🚖 Intern	al Standard										
💋 Import	2D Diffraction Pattern	n 💥 Remove	Last Phase	Search Window (°): 0.3 🗸	✓ 2nd Pass	Filter	[Status (Primary, Alternate	l												
📔 New d-	List	Complete	e Phases	Match Window (°)): 0.3 🗸	✓ Min GOM: 2000 ✓			🌌 Create Graph	Intens	sity Ratios 🔻										
	File	Acti	ion		1	Matches (3,165 o	of 397,421)		Table	Corr	rections										
GOM 🐣	PDF #	Peaks Matched	(Chemical Formula		(Compound I	Vame	Mineral Nam	e	Phase	Status	QM	Coords	I/Ic	D1 (Å)	D2 (Å)	D3 (Å)	D4 (Å)	D5 (Å)	
7214	04-012-0403	8 of 43 (19%)	Ba ₂ Cu _{0.10}	Pr Ru _{0.90} O ₆	Barium Co	opper Praseody	ymium Ruth	enium Oxide				P	0 I	1	5.91	2.981660	2.108900	1.724360	2.113470	1.490830	^
7158	04-012-0402	8 of 50 <i>(16%)</i>	Ba ₂ Pr Ru O	6	Barium Pr	raseodymium Ri	uthenium O	xide				Α	● I	1	5.98	2.981660	2.989740	2,108930	1.724400	2.113490	
7012	01-084-9262	8 of 29 <i>(28%)</i>	(Ba _{1.60} Ca ₀	_{).40}) La Nb O ₆	Barium Ca	alcium Lanthanu	um Niobium	Oxide				P	9 I		5.38	2.980870	2.989250	2,108190	1.724000	2.113320	
6870	04-022-2891	8 of 25 (32%)	Ba1.6 Ca0.4	La Eu _x Nb O ₆	Barium Ca	alcium Europium	n Lanthanur	n Niobium Oxide				P	<u></u> Θ Ρ	1	5.15	2.980890	2.989270	2.108190	1.724360	2.113340	
6768	04-002-4363	7 of 14 <i>(50%)</i>	Ba ₂ Y Nb O ₆	5	Barium Yt	ttrium Niobium (Oxide					A	— Р	1	15.39	2,983990	1.722810	2,110000	1.492000	1.334480	
6768	04-002-6579	7 of 14 <i>(50%)</i>	Ba ₂ Y Zr O ₆		Barium Yt	ttrium Zirconium	n Oxide					P	9 P	1	15.19	2.983990	1.722810	2.110000	1.492000	1.334480	
6754	04-021-7855	7 of 14 (50%)	Ba ₂ Ca _{0.79}	0.13 Nb1.08 O5.68	Barium Ca	alcium Yttrium N	Niobium Oxid	le				P	<u> </u>	1	14.1	2.982860	1.722150	2.109200	1.491430	1.333980	
6720	04-005-7520	7 of 14 (50%)	Ba2 Y ND O	5	Barium Yt	ttrium Niobium (Oxide					A	<u> </u>	1	15.39	2.982580	1.721990	2,109000	1.491290	1.333850	
6720	04-007-0162	7 of 14 (50%)	Ba2 Y ND O	5	Barium Yt	ttrium Niobium (Oxide					A	P	1	15.39	2.982580	1.721990	2.109000	1.491290	1.333850	
6705	04-015-2511	7 of 9 (78%)	Ba Y _{0.2} Zr _{0.}	8 02.9	Barium Yt	ttrium Zirconium	n Oxide					P	I	1	14.98	2.984400	1.723040	2.110290	1.492200	1.334660	~
<	04 012 4002 1	7 6+ 0 (700/)	IRS Y ZF		Desti un Ve	tteirum 7ie canirum	Ovido				1	· ^			14 021	D DODADI	1 7110101	3 1000001	1 /01000	1 1 2222nni >	
Diffraction 1,000	Patterns Phases F	Peaks (7 of 9)	1				1 1				1 1	1					1	New Co	i		-
Diffraction I 1,000 900	Patterns Phases F	Peaks (7 of 9)																— New Se	ssion		
Diffraction 1,000 900	Patterns Phases F	Peaks (7 of 9)																— New Se — Barium	ssion Yttrium Nic	obium Oxide	2
Diffraction 1 1,000 900 800	Patterns Phases F	Peaks (7 of 9)																— New Se — Barium	ssion Yttrium Nic	bium Oxide	2
Diffraction 1 1,000 900 800 700	Patterns Phases F	Peaks (7 of 9)																— New Se — Barium	ssion Yttrium Nic	obium Oxide	2
Diffraction 1 1,000 900 800 700 ≥ 600	Patterns Phases F	Peaks (7 of 9)																— New Se — Barium	ssion Yttrium Nic	obium Oxide	?
Diffraction 1 1,000 900 800 700 400 500 500	Patterns Phases F	Peaks (7 of 9)																— New Se — Barium	ssion Yttrium Nic	obium Oxide	2
Diffraction 1 1,000 900 800 700 20 500 400	Phases F	Peaks (7 of 9)																— New Se — Barium	ssion Yttrium Nic	obium Oxide	?
Diffraction 1 1,000 900 800 700 200 500 500 400	Patterns Phases F	Peaks (7 of 9)																— New Se — Barium	ssion Yttrium Nic	obium Oxide	?
Diffraction 1 1,000 900 800 700 500 400 300	Patterns Phases F	Peaks (7 of 9)																— New Se — Barium	ssion Yttrium Nic	obium Oxide	2
Diffraction 1 1,000 900 800 700 200 400 300 200	Patterns Phases F	Peaks (7 of 9)																— New Se — Barium	ssion Yttrium Nic	obium Oxide	2
Diffraction 1 1,000 900 800 700 100 500 400 300 200 100	Patterns Phases F	Peaks (7 of 9)																— New Se — Barium	ssion Yttrium Nic	obium Oxide	?
Diffraction 1 1,000 900 800 700 500 400 300 200 100	Patterns Phases F	Peaks (7 of 9)																— New Se — Barium	ssion Yttrium Nic	obium Oxide	?
Diffraction 1 1,000 900 800 700 500 400 300 200 100 0	Patterns Phases F	Peaks (7 of 9)																— New Se — Barium	ssion Yttrium Nic	obium Oxide	?
Diffraction 1 1,000 900 800 700 200 400 300 200 100 0	Patterns Phases F	Peaks (7 of 9)																— New Se — Barium	ssion Yttrium Nic	obium Oxide	?
Diffraction 1 1,000 900 800 700 500 400 300 200 100 0 1	Patterns Phases F 3.5 14.0 14.5	Peaks (7 of 9)	16.0 16.4	5 17.0 17.5	18.0 18.5 1	9.0 19.5	20.0 20.	5 21.0 21.5 22.0 2	2.5 23.0 23.5 24 20 (°)	4.0 24.5	25.0 25.5	5 26.0	26.5	27.0	27.5 28.	0 28.5 2	29.0 29.5	— New Se — Barium 30.0 30.	ssion Yttrium Nic	obium Oxide 31.5 32.0	
Diffraction 1,000 900 800 700 500 400 300 200 100 0 1	Patterns Phases F 3.5 14.0 14.5	Peaks (7 of 9)	16.0 16.4	5 17.0 17.5	18.0 18.5 1	9.0 19.5	20.0 20.	5 21.0 21.5 22.0 2	2.5 23.0 23.5 24 2θ (°)	4.0 24.5	25.0 25.8	5 26.0	26.5	27.0	27.5 28.	0 28.5 2	29.0 29.5	— New Se — Barium 30.0 30.	ssion Yttrium Nic	obium Oxide 31.5 32.0	

 Image: Search History Results
 Im

💿 Sleve+ -	(Untitled)																							15
File Help																					Rad	liation: X-ray	y (0.7093187 Å	()
💋 Import	1D Diffraction Patter	n 😻 Accept P	hase	Search Method	: Fink	~	Weight o	d-Spacings	💡 Set Filte	er	🔂 Insert PD	- -	lnterna	al Standard										
💋 Import	2D Diffraction Patter	n 🗶 Remove	Last Phase	Search Window	(°): 0.3	~ -	2nd Pase	s Filter	[Status (Pr	imary, Alternate)]														
PNew d-	I List	Complet	e Phases	Match Window	(°): 0.3	~ M	1in GOM: 2	2000 ~			🛃 Create G	aph 🔺	Intens	ity Ratios 🔻										
	File	Acti	ion			Mate	ches (1,919	of 397,421)			Table		Corn	ections										
GOM 🐣	PDF #	Peaks Matched	0	hemical Formula				Compound	Name		Mineral	Name		Phase	Status	QM	Coords	I/Ic	LS1 (Å)	LS2 (Å)	LS3 (Å)	LS4 (Å)	LS5 (Å)	
7318	04-012-0403	8 of 43 <i>(19%)</i>	Ba2 Cu0.10	^{or Ru} 0.90 ^O 6	Bariu	um Coppe	er Praseod	ymium Ruth	enium Oxide						P	0 I	1	5.91	2.981660	2.113470	2.108900	1.724360	1.494850	^
7184	04-018-0963	7 of 24 (29%)	Ba ₂ Y Ta O ₆		Bariu	um Yttriu	m Tantalun	n Oxide						Low tem	A	B	1	11.67	2.982230	2.112070	2.105450	1.722690	1.719990	
6868	01-084-9262	8 of 29 (28%)	(Ba _{1.60} Ca ₀	.40) La Nb O ₆	Bariu	um Calciu	um Lanthan	um Niobium	Oxide						P	<u> </u>		5.38	2.989250	2.980870	2.113320	2.108190	1.724000	
6854	04-022-2891	8 of 25 (32%)	Ba1.6 Ca0.4	La Eu _x Nb O ₆	Bariu	um Calciu	Im Europiur	m Lanthanur	m Niobium Ox	ide					P	P	1	5.15	2.989270	2.980890	2.113340	2.108190	1.724360	
6845	04-012-0402	8 of 50 (16%)	Ba ₂ Pr Ru O		Bariu	um Prase	odymium R	Luthenium O	xide						A	I	1	5.98	2.989740	2.981660	2.113490	2.108930	1.724400	
6/96	04-009-4989	8 of 32 (25%)	Ba H _{0.6} SD ₀	4 2.9	Bariu	um Thalliu	um Antimor	ny Oxide							P	O P	~	13.98	2.982660	2.970000	2.112/50	2,105390	1.722940	
6601	04-002-4363	7 of 14 (50%)	Ba V 7c O		Bariu Bariu	im Yttriu	m Niodium	Oxide							A	O P	1	15.39	2,983990	2,436420	2.110000	1.722810	1.492000	
6601	04-002-0379	7 of 9 (70%)	Ba Y Nb.	- W O-	Bariu	um Yttriu	m Niobium	Tuposten O	vide						P		-	15.19	2,903990	2,436420	2.110000	1,722010	1.492000	
6595	04-014-0985	7 of 14 /5/96)	Ba, Y Nb O,	2 ** 0.2 * 3	Bariu	im Yttriu	m Niobium	Ovide	XIUE						Δ		5	15.30	2,903990	2,436740	2.110000	1.722010	1.492190	
cene	04 015 2511	7 of 0 (700/1	Ra V 7r	0	Darie	um Vttein	m 7irconium	n Ovida							n	- T	1	14 00	2.004400	2 426750	3 110300	1 702040	1 400000	4
<																							>	
Diffraction	Patterns Phases	Peaks (7 of 9)																						
Diffraction	Patterns Phases	Peaks (7 of 9)																						
Diffraction 1,000	Patterns Phases	Peaks (7 of 9)										1	1			Ĩ					— New Se	ssion]
Diffraction 1,000 900	Patterns Phases	Peaks (7 of 9)																			— New Se — Barium	ssion Yttrium Nio	obium Oxide?	-
Diffraction 1,000 900 800	Patterns Phases 1	Peaks (7 of 9)																			— New Se — Barium	ssion Yttrium Nio	obium Oxide?	
Diffraction 1,000 900 800 700	Patterns Phases 1	Peaks (7 of 9)																			— New Se — Barium	ssion Yttrium Nio	obium Oxide?	
Diffraction 1,000 900 800 700	Patterns Phases 1	Peaks (7 of 9)																			— New Se — Barium	ssion Yttrium Nio	bbium Oxide?	
Diffraction 1,000 900 800 700 20 500	Patterns Phases 1	Peaks (7 of 9)																			— New Se — Barium	ssion Yttrium Nio	obium Oxide?	
Diffraction 1,000 900 800 700 20 500	Patterns Phases 1	Peaks (7 of 9)																			— New Se — Barium	ssion Yttrium Nio	obium Oxide?	
Diffraction 1,000 900 800 700 Atisuatu 500 400	Patterns Phases 1	Peaks (7 of 9)																			— New Se — Barium	ssion Yttrium Nio	obium Oxide?	
Diffraction 1,000 900 800 700 400 400 300	Patterns Phases 1	Peaks (7 of 9)																			— New Se — Barium	ssion Yttrium Nio	obium Oxide?	
Diffraction 1,000 900 800 700 400 300 200	Patterns Phases 1	Peaks (7 of 9)																			— New Se — Barium	ssion Yttrium Nio	obium Oxide?	
Diffraction 1,000 900 800 700 200 400 300 200 100	Patterns Phases 1	Peaks (7 of 9)																			— New Se — Barium	ssion Yttrium Nio	obium Oxide?	
Diffraction 1,000 900 800 700 200 400 300 200 100	Patterns Phases 1	Peaks (7 of 9)																			— New Se — Barium	ssion Yttrium Nio	obium Oxide?	
Diffraction 1,000 900 800 700 400 500 400 300 200 100 0	Patterns Phases I	Peaks (7 of 9)																			— New Se — Barium	ssion Yttrium Nio	obium Oxide?	
Diffraction 1,000 900 800 700 200 100 200 100 0	Patterns Phases I	Peaks (7 of 9)																			— New Se — Barium	ssion Yttrium Nio	obium Oxide?	
Diffraction 1,000 900 800 700 200 100 0 1	Patterns Phases 1	Peaks (7 of 9)	16.0 16.5	17.0 17.5	18.0 18.5	19.0	19.5	20.0 20.	5 21.0 2	21.5 22.0 22.	5 23.0 23.5	24.0	24.5	25.0 25.5	5 26.0	26.5	27.0	27.5 28	.0 28.5	29.0 29.5	— New Se — Barium 30.0 30	ssion Yttrium Nio	obium Oxide? 31.5 32.0	
Diffraction 1,000 900 800 700 200 100 200 100 0	Patterns Phases I	Peaks (7 of 9)	16.0 16.5	i 17.0 17.5	18.0 18.5	i 19.0	19.5	20.0 20.	5 21.0 2	21.5 22.0 22.	5 23.0 23.5 2θ (°)	24.0	24.5	25.0 25.5	5 26.0	26.5	27.0	27.5 28	.0 28.5	29.0 29.5	— New Se — Barium 30.0 30.	ssion Yttrium Nio	obium Oxide? 31.5 32.0	
Diffraction 1,000 900 800 700 200 100 0 1	Patterns Phases 1	Peaks (7 of 9)	16.0 16.5	17.0 17.5	18.0 18.5	; 19.0	19.5	20.0 20.	5 21.0 2	21.5 22.0 22.	5 23.0 23.5 2θ (°)	24.0	24.5	25.0 25.5	5 26.0	26.5	27.0	27.5 28	.0 28.5	29.0 29.5	— New Se — Barium 30.0 30.	ssion Yttrium Nio	obium Oxide? 31.5 32.0	

A weak peak at 28.44° (2.4065 Å) is still unaccounted for:

 Image: Search History Results
 Im

& Results - 26 of 412,083

File Fields Tools Help

≶ Open PDF Card	I 🎢 Sin	nulated Profile									My Defaults		~
PDF #	QM	Chemical Formula	Compound Name	Mineral Name	D1 (Å)	D2 (Å)	D3 (Å)	SYS	Auth SPGR	XtlCell a (Â)	XtlCell c (Å)	AuthCell Vol (Å3)	L1 (Â)
00-004-0777	- I	Ca O	Calcium Oxide	Lime, syn	2.405000	1.701000	2.778000	С	Fm-3m	4.811	4.811	111.32	2.7780
00-037-1497	🔵 S	Ca O	Calcium Oxide	Lime, syn	2.405870	1.700930	2.777370	С	Fm-3m	4.811	4.811	111.33	2.7773
00-048-1467	<u> </u>	Ca O	Calcium Oxide	Lime, syn	2.405060	1.700810	2.777710	С	Fm-3m	4.811	4.811	111.33	2.7777
01-070-5490	🔵 S	Ca O	Calcium Oxide	Lime, syn	2.407600	1.702430	2.780060	С	Fm-3m	4.815	4.815	111.65	2.7800
01-077-2010	9 I	Ca O	Calcium Oxide	Lime, syn	2.406000	1.701300	2.778210	С	Fm-3m	4.812	4.812	111.42	2.7782
01-077-9574	🔵 S	Ca O	Calcium Oxide	Lime, syn	2.405360	1.700850	2.777470	С	Fm-3m	4.811	4.811	111.33	2.7774
01-080-7710	🔵 S	Ca O	Calcium Oxide		2.408550	1.703100	2.781150	С	Fm-3m	4.817	4.817	111.78	2.781
01-082-1690	🔵 S	Ca O	Calcium Oxide	Lime, syn	2.402450	1.698790	2.774110	С	Fm-3m	4.805	4.805	110.93	2.774
04-002-6758	9 I	Ca O	Calcium Oxide	Lime, syn	2.405000	1.700590	2.777050	С	Fm-3m	4.810	4.810	111.28	2.7770
04-003-7161	0 I	Ca O	Calcium Oxide	Lime, syn	2.404000	1.699880	2.775900	С	Fm-3m	4.808	4.808	111.15	2.7759
04-004-5528	9 I	Ca O	Calcium Oxide		2.401600	1.698190	2.773130	C	Fm-3m	4.803	4.803	110.81	2.773
04-004-8549	9 I	Ba ₂ Sb ₃	Antimony Barium		3.095000	2.414010	3.170170	M	P21/c	15.817	6.934	1475.44	10.2476
04-004-8985	9 I	Ca O	Calcium Oxide	Lime, syn	2.405600	1.701020	2.777750	С	Fm-3m	4.811	4.811	111.37	2.7777
04-005-4757	9 I	Ca O	Calcium Oxide	Lime, syn	2.401000	1.697760	2.772440	С	Fm-3m	4.802	4.802	110.73	2.7724
04-005-6351	9 I	Ca O	Calcium Oxide	Lime, syn	2.407500	1.702360	2.779940	С	Fm-3m	4.815	4.815	111.63	2.7799
04-005-9402	9 I	Ca O	Calcium Oxide	Lime, syn	2.407500	1.702360	2.779940	С	Fm-3m	4.815	4.815	111.63	2.7799
04-006-5940	н	Ca O	Calcium Oxide	Lime, syn	2.410000	1.704130	2.782830	С	Fm-3m	4.820	4.820	111.98	2.7828
04-006-5942	9 I	Ca O	Calcium Oxide	Lime, syn	2.406000	1.701300	2.778210	С	Fm-3m	4.812	4.812	111.42	2.7782
04-006-6519	9 I	Ca O	Calcium Oxide	Lime, syn	2.400000	1.697060	2.771280	С	Fm-3m	4.800	4.800	110.59	2.7712
04-006-9375	0 I	Ca O	Calcium Oxide	Lime, syn	2.405000	1.700590	2.777050	С	Fm-3m	4.810	4.810	111.28	2.7770
04-007-4743	9 I	Ca O	Calcium Oxide	Lime, syn	2.405290	1.700800	2.777400	С	Fm-3m	4.811	4.811	111.33	2.7774
04-007-8376	0 I	Ca O	Calcium Oxide	Lime, syn	2.405000	1.700590	2.777050	С	Fm-3m	4.810	4.810	111.28	2.7770
04-007-9734	9 I	Ca O	Calcium Oxide	Lime, syn	2.409500	1.703770	2.782250	С	Fm-3m	4.819	4.819	111.91	2.7822
04-010-5778	● I	Ca O	Calcium Oxide	Lime, syn	2.407600	1.702430	2.780060	С	Fm-3m	4.815	4.815	111.65	2.7800
04-011-8430	0 I	Ca O	Calcium Oxide	Lime, syn	2.404000	1.699880	2.775900	С	Fm-3m	4.808	4.808	111.15	2.7759
04-011-9020	9 I	Ca O	Calcium Oxide	Lime, syn	2.404850	1.700490	2.776880	С	Fm-3m	4.810	4.810	111.26	2.7768

[Just (Ca And Ba And Sb And O)] And [Strong Line = 2.41(0.01) Å] And [Status (Primary, Alternate)]

Search

>

There's still a very weak peak at 32.89°/2.0881 Å:

🥪 🛛 🖉 🍣 🧊

Open PDF Cards Preferences Search History Results SIeve+ Microanalysis

Q

@ Results - 10 of 412,083

File Fields Tools Help

≶ Open PDF Card	🞢 Sim	nulated Profile									My Defaults		~
PDF #	QM	Chemical Formula	Compound Name	Mineral Name	D1 (Å)	D2 (Å)	D3 (Å)	SYS	Auth SPGR	XtlCell a (Å)	XtlCell c (Å)	AuthCell Vol (Å3)	L1 (Â)
00-017-0125	🔴 В	Sb	Antimony		2.940000	2.090000	1.710000	С	Pm-3m	2.960	2.960	25.93	2.9400
00-020-0209	0 🥥	Ca ₃ Sb ₂ O ₆	Calcium Antimony Oxide		2.970000	2.880000	2.080000	Х					4.4200
01-083-8080	9 I	0 ₈	Oxygen		2.158210	2.087170	3.271880	M	C2/m	6.947	3.656	139.90	4.3164
01-083-8081	🔵 S	0 ₈	Oxygen		2.157840	2.085380	3.275620	М	C2/m	6.963	3.657	140.01	4.3156
04-002-2786	9 I	Ba O	Barium Oxide		2.084070	2.899140	2.050000	Т	P4/nmm	4.100	2.998	50.40	2.9980
04-007-9029	🔵 S	Sb	Antimony		2.987500	2.099000	2.126230	R	R-3m	4.198	10.485	160.02	3.4950
04-007-9030	🔵 S	Sb	Antimony		2.983760	2.098000	2.121870	R	R-3m	4.196	10.455	159.41	3.4850
04-013-2320	😐 I	(O ₂)	Oxygen		2.158210	2.087170	3.271880	м	C2/m	6.947	3.656	139.90	4.3164
04-013-2321	S	(0 ₂)	Oxygen		2.157840	2.085380	3.275620	М	C2/m	6.963	3.657	140.01	4.3156
04-017-1162	P	Sb	Antimony		2.929190	2.060000	2.082690	R	R-3m	4.120	10.260	150.82	3.4200

[Just (Ca And Ba And Sb And O)] And [Strong Line = 2.09(0.01) Å] And [Status (Primary, Alternate)]

🚷 Search 🛛 🔍

<

>

Quantitative Phase Analysis

Phase	Concentration, wt%
Ba ₃ CaSb ₂ O ₉	88.59(3)
Ba_2CaSbO_6	10.59(9)
CaO	0.53(3)
BaO?	0.28(2)
other	trace

Use of SIeve+ and JADE

"prelithiated Si" ashu003.xrdml

IExpress flower food kadu1852.xrdml

[kadu1852] IExpress flower food (60,40,1/4,0.02,0.7 mm cap) JAK

Supplied with PDF-4

"Sessions"

Inorganic Phases

- Exercise 7-1-1. Believed to be a pure phase, but not sure that the label on the reagent bottle is correct.
- Exercise 7-1-2. A student tried to prepare SrTiO₃ using reagent SrO, but the reaction did not go as planned. Check the SrO.
- Exercise 7-1-3. Check the product of a preparation of CdTiO₃ to see if it is phase pure.

Inorganic Phases

- Exercise 7-1-4. A mixture of three common oxides.
- Exercise 7-1-5. A smear mount of a natural specimen of witherite, BaCO₃.
- Exercise 7-1-6. A white paint.
- Exercise 7-1-7. A black filter deposit from a filter in a new solar hot water system. XRF indicates Fe, Ca, and minor Mg. An acid test indicates the presence of carbonate.

Inorganic Phases

- Exercise 7-1-8. A sample of lime (prepared by heating calcite at 1000°C) was left exposed to the air for several days. What is it now?
- Exercise 7-1-9. A synthetic red phosphor for color television tubes.
- Exercise 7-1-10. A fluorescent screen (which turns out to be a solid solution).

Minerals

- Exercise 7-2-1. A natural specimen of a zinc mineral. Consider data quality of old PDF entries and associations.
- Exercise 7-2-2. A mixture of polymorphs.
- Exercise 7-2-3. A mixture prepared to simulate the pressure-induced changes which can be induced by severe grinding. The specimen was prepared without any special care to avoid preferred orientation.

Minerals

- Exercise 7-2-4. An attempt to estimate the composition of a solid solution mineral.
- Exercise 7-2-5. A hydrothermal ore containing a trace of gold.
- Exercise 7-2-6. Typical raw material used to make dental ceramics (the best grade of whiteware porcelain). It is mined from a pegmatite deposit. We are asked to identify the feldspar(s) present.

Minerals

- Exercise 7-2-7. A mixture of sulfide minerals.
- Exercise 7-2-8. A mineral with low-angle lines and an impurity.
- Exercise 7-2-9. The $< 2\mu m$ fraction of a sedimentary rock (sandstone).

Metals and Alloys

- Exercise 7-3-1. An artificial example to build confidence in identifying multi-phase unknowns
- Exercise 7-3-2. A steel
- Exercise 7-3-3. A corrosion product from a white metal bearing. XRF indicates the presence of Sn, with small amounts of Cu and Sb.

Organic Phases

- Exercise 7-4-1. A tablet, ground to a fine powder and smeared on a zero-background holder.
- Exercise 7-4-2. A potassium-containing compound isolated from a winery.
- Exercise 7-4-3. The product of an organic synthesis which used both NaOH and HCl.
- Exercise 7-4-4. A complete unknown.

Organic Phases

- Exercise 7-4-5. An over-the-counter medication.
- Exercise 7-4-6. A white powder found in an abandoned house.
- Exercise 7-4-7. An over-the-counter pharmaceutical.
- Exercise 7-4-8. A pharmaceutical which is known to contain sulfur.
- Exercise 7-4-9. A mixture which is known to contain CN, Cl, and COOH groups.
- Exercise 7-4-10. A prescription medication which is known to contain S by XRF.