ab initio Structure Determination Using Powder Data

James A. Kaduk Poly Crystallography Inc. Naperville IL 60540 kaduk@polycrystallography.com

Part 4. Structure Determination

Chapters 4.1-4.10 (137 pages) in International Tables for Crystallography Volume H: Powder Diffraction (2019).

Fig. X.Z.1.1. (a) The maze of strategies associated with the determination of crystal structures from powder diffraction data (after Baerlocher & McCusker, 2002) and (b) the modified "global optimisation" maze showing the double start point and simplification of the principal maze.

W. I. F. David, Chapter 4.3 (4.3.1), Real space methods for structure solution from powder diffraction data: applications to molecular structures, *Volume H.* $_3$

Fig. X.Z.4.4. 2D section of the χ^2_{CI} hypersurface showing the variation in χ^2_{CI} as function of x and z translations.

Figure 2. Predicted structures of (a) bicyclo(3.3.1)nonane-2,6-dione and (b) 3,5-pyrazolidinedione.

G. M. Day, J. Chisolm, N. Shan, W. D. S. Motherwell, and W. Jones, *Cryst. Growth Des.*, **4**, 1327-1340 (2004). (Special Issue on crystal structure prediction)

ab initio Structure Determination

- Don't find an analog
- Reciprocal space methods
- Real space methods

grid search, Monte Carlo, simulated annealing, genetic algorithms, parallel tempering, particle swarm optimization

- Monte Carlo Simulated Annealing (real and reciprocal space = hybrid)
- Stealth and guile
- Microcrystals (convert powder problem to single crystal) polycrystals?

Reciprocal Space Methods

Solving Crystal Structures – Reciprocal Space Methods, A. Altomare, C. Cuocci, A. Moliterni, and R. Rizzi, Chapter 4.2 in *International Tables for Crystallography Volume H: Powder Diffraction* (2019).

Reciprocal Space Methods

• Patterson methods

(really direct methods, but uses some Patterson ideas)

XLENS; J. Rius, "Patterson-function direct methods for structure determination of organic compounds from powder data. XVI", *Acta Cryst. Sect. A: Found. Crystallog.*, **67**(1), 63-67 (2011)

EXPO2014 has Patterson functionality

• Maximum entropy methods

MICE; C. Gilmore, W. Dong, & G. Bricogne, "A multisolution method of phase determination by combined maximization of entropy and likelihood. VI. The use of error-correcting codes as a source of phase permutation and their application to the phase problem in powder, electron and macromolecular crystallography", *Acta Cryst. Sect. A: Found. Crystallogr.*, **55**, 70-83 (1999)

Direct methods

Giacovazzo, C. *Phasing in Crystallography*. IUCr/Oxford University Press (2015)

• Charge flipping

Direct Methods

$NaAlO_2 \cdot 5/4H_2O$

- commercial "NaAlO₂· xH_2O "
- an important industrial chemical

NaAl02.5/4H20, X3B1,28 Feb 93,lam=0.699323(27),zero=0.0036(12),pla

27-APR-01 14:12:37

Sodium Aluminate

- Commercial NaAlO₂· xH_2O
- TGA: x = 1.25
- ²⁷Al MASNMR: 2 T_d Al (1 is impurity)
- *P*-tetragonal, a = 10.534, c = 5.336 Å
- $P\bar{42}_{1}m$ or $P42_{1}2$
- Density: cell contains Na₈Al₈H₂₀O₂₆

Sodium Aluminate

- Le Bail extraction, $7 < 2\theta < 50^{\circ}$
- 357 structure factors (d > 0.83 Å)
- Try both $P\bar{42}_1m$ and $P42_12$
- SHELX direct methods Al in E-map
- $LS/\Delta F 2 O$ (add others), Na, water O
- Manually place 2 of 3 H

Scaling: 30.5(10.0X) 47.5(20.0X)

20-MAY-95 10:49:57

b **≜**

⊨ a

20K

"The Crystal Structure of Hydrated Sodium Aluminate, NaAlO₂·5/4H₂O, and Its Dehydration Product", J.A. Kaduk and S. Pei, *J. Solid State Chem.*, **115**, 126-139 (1995)

EXPO2014 http://www.ic.cnr.it

A. Altomare, N. Corriero, C. Cuocci,
A. Falcicchio, A. Moliterni, and R. Rizzi,
"EXPO software for solving crystal structures by powder diffraction data: methods and application", *Cryst. Res. Technol.*, 1-6 (2015)

$Mg(H_2C_6H_5O_7)_2$ bis(dihydrogencitrato)magnesium

The last phase to crystallize when evaporating the Ca/Mg citrate solution left from cleaning a home water still

Scaling: 3.0(2.0X) 11.0(10.0X) 17.0(40.0X)

"Crystal structures of two magnesium citrates from powder diffraction data", J. A. Kaduk, *Acta Cryst. E***76**, 1611-1616 (2020).

$\text{LiK}_2\text{C}_6\text{H}_5\text{O}_7(\text{H}_2\text{O})$

Andy Cigler North Central College

Crystal structure of minocycline hydrochloride dihydrate, $C_{23}H_{28}N_3O_7Cl$ $(H_2O)_2$

Minocin® and Dynacin® broad-spectrum tetracycline antibiotic

Scaling: 7.5(5.0X) 15.7(20.0X)

RMS Cartesian displacement = 0.094 Å

Charge Flipping

Charge Flipping References

G. Oszlányi and A. Sűtó, "The charge flipping algorithm", *Acta Cryst. A: Found. Crystallogr.*, **64**, 123-134 (2008).

A.A. Coelho, "A charge-flipping algorithm incorporating the tangent formula For solving difficult structures", *Acta Cryst. A: Found. Crystallogr.*,
63, 400-406 (2007).

L. Palatinus and G. Chapuis, *SUPERFLIP* – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions", *J. Applied Crystallogr.*, **40**, 786-790 (2007).

H. Gies, "Charge Flipping and Beyond", Science, 315, 1087-1088 (2007).

C. Baerlocher, F. Gramm, L. Massűger, L. B. McCusker, Z. He, S. Hovmöller, and X. Zou, "Structure of the Polycrystalline Zeolite Catalyst IM-5 Solved by Enhanced Charge Flipping", *Science*, **315**, 1113-1116 (2007).

Jana2006 http://jana.fzu.cz

V. Petricek, M. Dusek, and L. Palatinus, L., Z. Kristallogr. 229(5), 345-352 (2014). DOI 10.1515/zkri-2014-173

Electron Density of IM-5

$Sb(C_2O_4)OH$

A potential stoichiometric Sb source

[toft193] 22017-4 Sb(C2O4)(OH) (40,40,0.3) JAK

Structure Solution

- Index (DICVOL06): *M/F*(19) = 123.3/141.1
 5.82713(3), 11.29448(10), 6.31377(3) Å, V = 415.537(5) Å³; *Pnma*, Z = 4
- Monte Carlo simulated annealing and direct methods failed (both found Sb on mirror)
- Use charge flipping (Jana2006) Sb1, O2
- $LS/\Delta F O3, C4, O5?$

Scaling: 56.0(20.0X) 89.0(40.0X)

Texture Index = 1.441

"Crystal structure of antimony oxalate hydroxide, $Sb(C_2O_4)OH$ ", J. A. Kaduk, M. A. Toft, and J. T. Golab, *Powder Diffraction*, **25**(1), 19-24 (2010).

Tamsulosin Hydrochloride $C_{20}H_{29}N_2O_5SCl$

Flomax (generic in 2010) benign prostatic hyperplasia (BPH)

Tamsulosin Hydrochloride

Charge Flipping Result

X10u 4

Scaling: 9.0(6.0X) 14.0(20.0X)

Flucytosine, C₄H₄FN₃O

Alcobon, Ancobon, Ancotil antifungal

Missed one atom type

b

Trimellitic Anhydride a versatile chemical intermediate

Trimellitic Anhydride

- Try to grow crystals adducts!
- *P*-orthorhombic
- *a* = 5.3684, *b* = 6.8628, *c* = 21.6999 Å
- $P2_1xx 7$ possible space groups
- *P2*₁*2*₁*2*₁, *P2*₁*2*₁*2*, *Pna2*₁, *Pca2*₁ most likely
- $\rho \sim 1.6 \text{ g/mL} \rightarrow Z = 4!$

Two possible conformations:

(E)-TMA

(Z)-TMA

Real Space Structure Solution

- Optimize each conformation (Gaussian92)
- 2 conformations × 4 space groups
- Generate "library" of potential low-energy crystal structures
- 2^{nd} -lowest energy in $P2_12_12_1$ had cell similar to observed
- refine

"The Crystal Structures of Trimellitic Anhydride and Two of Its Solvates", J. A. Kaduk,
J. T. Golab, and F. J. J. Leusen, *Crystal Engineering*, 1(3/4), 277-290 (1998)

Real Space (Hybrid) Methods

Monte Carlo Simulated Annealing Parallel Tempering

Nickel(II) 2,6naphthalenedicarboxylate tetrahydrate

• A phase-pure compound synthesized as part of a program to understand commercial plant deposits

$NiNDA(H_2O)_4$

- Yield \rightarrow Ni:NDA = 1:1
- TGA \rightarrow tetrahydrate
- Index: a = 10.0851(4), b = 10.9429(5), c = 6.2639(3) Å, α = 98.989(2), β = 87.428(3), γ = 108.015(2)°, Z = 2
- *P1* or *P1*

Monte Carlo Simulated Annealing

- First try NDA (with 2 torsions) and Ni
- Plausible solutions, but not refinable
- A *trans* octahedral complex?

Ni-O Distances in NiO₆ Coordination Spheres

Mean = 2.08(6) Å

Ni(II) 2,6-naphthalenedicaroxylate tetrahydrate

Quantum mechanics to locate hydrogens!

"Salts of aromatic carboxylates. The crystal structures of nickel(II) and cobalt(II) 2,6naphthalenedicarboxylate tetrahydrate", J. A. Kaduk and J. A. Hanko, *J. Appl. Cryst.*, **34**, 710-714 (2001).

(*Z*)-*N*,*N*'-*bis*(2-*tert*-butylphenyl)formamidinic perchlorate, C₂₁H₂₉N₂ClO₄

Qinliang (Kin) Zhao University of the Pacific Stockton CA

Scaling: 27.5(5.0X) 37.0(20.0X)

The Pharmaceutical Project > 70 structures and counting

"Crystal structure of atorvastatin calcium trihydrate Form I (Lipitor®),
(C₃₃H₃₄FN₂O₅)₂Ca(H₂O)₃", R. L. Hodge, J. A. Kaduk, A. M. Gindhart, and T. N. Blanton, *Powder Diffraction* **35**(2), 136-143 (2020).

Diammonium 2,6-naphthalenedicarboxylate $(NH_4)_2(2,6-C_{12}H_6O_4)$

 $P\bar{I}, a = 4.1531(3), b = 5.9937(3),$ $c = 12.2752(10) \text{ Å}, \alpha = 79.123(7),$ $\beta = 81.040(9), \gamma = 86.781(5)^{\circ},$ $V = 296.31(4) \text{ Å}^{3}, \rho = 1.402 \text{ g/mL}$

$(NH_4)_2(2,6-C_{12}H_6O_4)$

- Couldn't index until took to APS (20 min!)
- Cell is 1 wide \times 1 long \times 1 thick
- Place NDA anion at origin in *P-1*
- Manually adjust so don't overlap
- Place NH₄ in hole, and refine

Sulfabenzamide Form I

A polymorph problem?

Synchrotron Data for Sulfabenzamide Form I MR-CAT 10-ID, APS

Index the pattern

a = 8.17063(9), b = 15.98004(18), c = 10.38237(10) Å, $\beta = 104.1810(9)^{\circ}, P2_{1}/c$

Draw the molecule, and optimize

See what torsion angles we can expect

See how reasonable the torsions are

Manually adjust the torsions

Build the crystal

Remove the extra bonds

Import data and do Pawley fit

Try a rigid molecule with reasonable torsions

The fit isn't great...

Compare to eventual refined structure

Rotate by 180° around b

Add four torsions

M ACA_0	5 - MS Modeling -	[sulfam Dis	sco Min\su	fam.xsd]	14/indow Link								
	uit <u>view m</u> ouny		o X Da		¢undow <u>H</u> eip ¢⊈ Q ∳∳	, 	<u>a</u> ¶ / c	- An - A.	• 🔉 • 🐄	• ₩≣ HI •		in	
	🗱 🛛 🖽 - ĝi 3					• 🛛 • 🗖		AL P G	∲ • 🍣 •			° ∦≁ €≁ ∭≁	• • -
8	🗄 🗹 😭 🗖	10 🥜	• 🥜 • B	<mark>۹</mark> ـ									
Project	kadu445 sulfam Ifam Disco Min sulfam Reflex PSolv Sulfam Solution Sulfam RWP vs Sulfam Solution Sulfam Solution	ve er Solve xsd ters Step ent					25.000	-7.8	-65	98.130			
Filter: To	rsion	•					10						4
Property Angle IsLabeled. IsVisible Name Style	Value Yes Yes Monitor					Z							×
			×	Description	Job Id	Gateway	Server	Status	Progress	Start Time	Results Fo		

Structure Solution with Torsions

- First try not good = not enough H-bonds
- Second try Rwp = 0.0891, but no H-bonds and there were close close contacts
- Third try add close contact penalty Rwp = 0.0552 (0.0495), and a good fit:

Sulfabenzamide Form I

Scaling: 20.0 (5.0 X)
Paliperidone Palmitate C₃₉H₅₇FN₄O₄

Invega® Sustenna® antipsychotic

Paliperidone Palmitate

[11bmb_0176] APS11BM|mar15/11bmb_0176.mda|2015-03-14T00:08:17

Scaling: 6.6(5.0X)

Paliperidone Palmitate

Paliperidone Palmitate (wrong)

文 the

RMS $\Delta = 0.658$ Å; red = Rietveld, blue = DFT

More Simulated Annealing

The 5/6 fused-ring end of the paliperidone rotates by 180°

Scaling: 1.0(5.0X) 6.6(25.0X)

Paliperidone Palmitate (correct)

half

RMS $\Delta = 0.165$ Å; red = Rietveld, blue = DFT

Paliperidone Palmitate (correct)

Eltrombopag Diolamine Structure Solution

Programs for *ab initio* Structure Solution

Program	Source	Price
FOX	Vincent Favre-Nicolin	Fox.vincefn.net
	Rodovan Czerny	SourceForge
EXPO2014	Carmelo Giacovazzo	Free/1000€/Bari
TOPAS	Alan Coelho	\$/\$\$//Coelho/Bruker
SUPERFLIP	Palatinus & Chapuis	Free http://superspace/epfl.ch/superflip
JANA2006	V. Petříček	Free http://jana.fzu.cz
DASH	W.I.F. David	With CSD
Reflex Plus	Accelrys	~30k\$?
Polymorph Predictor	Accelrys	~70k\$?
Endeavour	Crystal Impact	299€/599€/1198€
WinPSSP	Silvina Pagola	Free http://users.uoi.gr/nkourkou/winpssp
ESPOIR	Armel Le Bail	Free/CCP14
SHELX	George Sheldrick	Free/\$\$
WinGX	CCP14	Free/\$ 120

... and then, once you solve your problem, put the information in the Powder Diffraction File!

Real-Time Example of Monte Carlo Simulated Annealing Using FOX

Dy(Ti_{0.25}Co_{0.75})O₃ *Pnma* a = 5.5336, b = 7.5008, c = 5.2373wong764b.dat, 20-130°, $(\sin\theta/\lambda)_{max} = 0.55$ Co-O = 1.96 Å

Real-Time Example of Direct Methods Using EXPO2014 Dienogest, C₂₀H₂₅NO₂

11bmb_2406.cif

Real-Time Example of Charge Flipping Using Jana2006 Herbertsmithite, Cu₃Zn(OH)₆Cl₂

 $R\bar{3}m, a = 6.838, c = 14.064, Z = 3$ wong755.dat, 12-130°