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1. Crystal structures, symmetry, lattices, unit cells and 
crystal systems.

2. Elements of point symmetry and point groups.

3. Elements of translation symmetry and space groups.

4. Crystal structures, symmetry operations, equivalent 
positions, special positions and site multiplicities.

5. Crystal planes, d-spacing, hkl indices and plan 
multiplicities.
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What is a Crystal Structure? 

• A crystal structure is a pattern of atoms which repeats 

periodically in three dimensions (3D).

• The pattern can be as simple as a single atom, or 

complicated like a large organic molecule or protein.

• The periodic repetition can be represented using a 3D 

lattice.

• The atomic pattern and the lattice generally both exhibit 

elements of symmetry.



What is Symmetry?

• An object has symmetry if an operation or 

movement leaves the object in a position 

indistinguishable from the original position.

• Crystals have two types of symmetry we have to 

consider:

• Point symmetry (associated with the atomic pattern).

• Translational symmetry (associated with the crystal 

lattice).



What is a Lattice?

• Consider a periodic 

pattern in 2D.

• A system of points can 

be obtained by 

choosing a random 

point with respect to 

the pattern.

• All other points 

identical to the original 

point form a set of 

lattice points.



Lattice Points and Unit Cells

• By connecting our 

lattice points, we 

divide the area into  

parallelograms.

• Each parallelogram 

represents a unit 

cell, a basic building 

block which can be 

used to replicate the 

entire structure.



Unit Cell (2D)

• The size and shape of the unit cell can be described by 2 

basis vectors (two edge lengths, a & b, and the angle γ).

• Any position in the unit cell can be 

described in terms of the basis 

vectors with fractional coordinates:

Point p → (1, ½) = 1 a + 0.5 b

• Every lattice point can be 

generated by integer translations 

of the basis vectors (t = ua + vb, 

where u & v are integers).



Choice of Unit Cell

• The choice of unit 

cell is not unique.

• A unit cell with lattice 

points only at the 

corners (1 lattice 

point per cell) is 

called primitive, 

while a unit cell with 

additional lattice 

points is called 

centered.



2D Planar Systems

Figure courtesy of Michael Gharghouri.



Unit Cell (3D) 

• The 3D unit cell 

size and shape 

can be fully 

described using 

3 basis vectors 

(three lengths a, 

b & c and three 

angles α, β & γ). 

• The volume of the unit cell is given by:

𝑉 = 𝑎𝑏𝑐 1 − cos2𝛼 − cos2𝛽 − cos2 𝛾 + 2 cos 𝛼 cos 𝛽 cos 𝛾 Τ1 2



3D Crystal Systems

System Lattice Parameter

Restrictions

Bravais

Lattices

Triclinic

(Anorthic)

a, b, c, α, β, γ aP

Monoclinic a, b, c, 90, β, 90 mP, mC

Orthorhombic a, b, c, 90, 90, 90 oP, oC, oI, oF

Trigonal a, a, a, α, α, α

a, a, c, 90, 90, 120

R

hP

Hexagonal a, a, c, 90, 90, 120 hP

Tetragonal a, a, c, 90, 90, 90 tP, tI

Cubic a, a, a, 90, 90, 90 cP, cI, cF



Redundant Bravais Lattices

Figure taken from: Sands, D.E., Introduction to Crystallography.

(Dover: New York, 1993) 



Bravais Lattices



Types of Symmetry

• The lattice and unit cell basis vectors describe 

aspects of the translational symmetry of the crystal 

structure.

• However, we also have to consider symmetry 

elements inherent to the atoms and molecules 

within the unit cell.

• The symmetry elements of finite molecules are 

called point symmetry.



What is Point Symmetry?

• A point symmetry operation always leaves at least 

one point fixed (an entire line or plane may remain 

fixed).

• Rotation axes, mirror planes, centers of symmetry 

(inversion points) and improper rotation axes are all 

elements of point symmetry.

• Collections of point symmetry elements describing 

finite molecules are called point groups.



Rotation Axes

• A rotation of 360°/n is referred to with the symbols n

(Hermann-Mauguin notation) or Cn (Schoenflies notation).

• Crystals are restricted (in 3D) to 1, 2, 3, 4 & 6 rotation axes.

Figures taken from: Sands, D.E., Introduction to Crystallography.

(Dover: New York, 1993) 

3 or C3 axis



Mirror Planes

• A mirror (or reflection) plane is referred to as m (Hermann-

Mauguin) or σ (Schoenflies).

Figures taken from: Sands, D.E., Introduction to Crystallography.

(Dover: New York, 1993) 



Center of Symmetry (Inversion)

• A line drawn from any point 

though a center of symmetry 

arrives at an identical point an 

equivalent distance from the 

center (if the inversion center is 

the origin, a point at x, y, z is 

equivalent to a point at –x, -y, -

z).

• Referred to with the symbols 
ഥ𝟏 (Hermann-Mauguin notation) 

or i (Schoenflies notation). 

Figure taken from: Sands, D.E., Introduction to Crystallography.

(Dover: New York, 1993) 



Improper Rotation Axes

• An improper rotation axis 

(rotoinversion or 

rotoreflection axis) combines 

two operations.

• A Hermann-Mauguin

improper rotation 

(rotoinversion) axis, referred 

to with the symbol ഥ𝒏, is a 

combination of a rotation by 

360°/n followed by inversion 

through a point.

ത3 axis



Improper Rotation Axes

• A Schoenflies improper 

rotation (rotoreflection) 

axis, referred to with the 

symbol Sn, is a 

combination of a rotation 

by 360°/n followed by 

reflection in a plane 

normal to the axis.

• For odd values of n:

𝑆𝑛 = 2𝑛
ത𝑛 = 𝑆2𝑛 Figure taken from: Sands, D.E., Introduction to Crystallography.

(Dover: New York, 1993) 

𝑺𝟑 = ഥ𝟔



Elements of Point Symmetry

Element Hermann-Mauguin 

Symbols

Schoenflies

Symbols

Rotation Axis 1,2,3,4,6 C1, C2, C3, C4, C6

Mirror Plane m σ

Identity 1 E = C1

Center of Symmetry

(Inversion)

ത1 i

Rotary Inversion (or 

Reflection)  Axis

ത1, ത2, ത3, ത4, ത6 S2, S1, S6, S4, S3



Point Groups

• The point group refers to the collection of point 

symmetry elements possessed by an atomic or 

molecular pattern.

• There are 32 point groups that are compatible with 

translational symmetry elements.

• With Hermann-Mauguin notation, each position in 

the symbol specifies a different direction.



Point Groups – Hermann-Mauguin

• Each component of the point group symbol corresponds to a 

different direction.

• The position of an m refers to a direction normal to a mirror 

plane.

• A component combining a rotation axis and mirror plane (i.e. 

4/m or “four over m”) refers to a direction parallel a rotation 

axis and perpendicular the mirror plane.

• Orthorhombic groups: The three components refer to the 

three mutually perpendicular crystal axes (x, y, z).



Point Groups – Hermann-Mauguin

• Tetragonal point groups: The 4-fold axis is parallel the z 

direction. The second component refers to the equivalent x 

and y directions, and the third component refers to 

directions in the xy plane bisecting the x and y axes.

• Hexagonal and Trigonal point groups: The second 

component refers to equivalent directions (120° or 60° apart) 

in the plane normal to the main 6-fold or 3-fold axis.

• Cubic point groups: The first component refers to the cube 

axes, the second component (3) refers to the four 3-fold 

axes along the body diagonals, the third component refers 

to the face diagonals.



Point Groups

Table taken from: Sands, D.E., Introduction to Crystallography.

(Dover: New York, 1993) 



Crystal Systems

System Lattice Parameter

Restrictions

Bravais

Lattices

Minimum Symmetry

Elements

Triclinic

(Anorthic)

a, b, c, α, β, γ aP None

Monoclinic a, b, c, 90, β, 90 mP, mC One 2-fold axis

Orthorhombic a, b, c, 90, 90, 90 oP, oC, oI, oF Three perpendicular 

2-fold axes

Trigonal a, a, a, α, α, α

a, a, c, 90, 90, 120

R

hP

One 3-fold axis

Hexagonal a, a, c, 90, 90, 120 hP One 6-fold axis

Tetragonal a, a, c, 90, 90, 90 tP, tI One 4-fold axis

Cubic a, a, a, 90, 90, 90 cP, cI, cF Four 3-fold axes



Trigonal System

• The trigonal system has two 

distinct types of lattices:

1. A primitive cell can be chosen 

with a = b, α = β = 90°, γ = 120°. 

This type is identical to the 

hexagonal lattice except the 

trigonal cell has a 3-fold rather 

than a 6-fold axis.

2. A primitive cell can be chosen 

with a = b = c, α = β = γ ≠ 90°, this 

lattice type is called rhombohedral 

(R).

Figure taken from: Sands, D.E., Introduction to Crystallography.

(Dover: New York, 1993) 



Hexagonal and Rhombohedral Lattices

Hexagonal

Rhombohedral



Point Groups & Space Groups

• The 32 point groups cover all the possible point symmetry 

elements which occur in finite molecules

• To fully describe the symmetry of crystal structures, we need 

to include two symmetry elements which combine rotation 

and reflection with the translational symmetry of the lattice 

(called screw axes and glide planes respectively).

• Groups which include both the point symmetry elements of 

finite molecules and the translational elements of a crystal 

are called space groups.



Screw Axes

• A screw axis, referred to 

with the symbol np, 

combines two 

operations; a rotation of 

360°/n followed by a 

translation of p/n in the 

direction of the axis.

Figures taken from: Sands, D.E., Introduction to Crystallography.

(Dover: New York, 1993) 



21 Screw Axis Parallel the b-axis

½b



21 Screw Axis Parallel the b-axis



Glide Planes

• A glide plane combines two operations, reflection in a plane 

followed by translation parallel the plane. 

• A glide parallel the b-axis would be referred to with the 

symbol b, and consist of a reflection followed by a 

translation of b/2. 



Diagonal Glide Planes

• A glide plane parallel the a-b axes diagonal would be 

referred to with the symbol n, and consist of a reflection in 

the a-b plane followed by a translation of (a+b)/2. 

Figure taken from:  Pecharsky, V. K. & Zavaliy, P. Y., Fundamentals of                                                       

Powder Diffraction and Structural Characterization of 

Materials, 2nd edition. (Springer: Berlin, 2009). 



Space Groups

• By combining the point groups, Bravais lattices and 

translation symmetry elements (screw axes and glide 

planes), 230 unique space groups are obtained.

• Many space groups have multiple settings (and/or choices 

of origin based on the site symmetry chosen for the origin):

• Space group number 62 (orthorhombic) 

• Standard setting: Pnma

• Alternate settings: Pnam, Pmcn, Pcmn, Pbnm, Pmnb

• Two very useful websites for space group information:

http://img.chem.ucl.ac.uk/sgp/mainmenu.htm

http://www.cryst.ehu.es/

http://img.chem.ucl.ac.uk/sgp/mainmenu.htm
http://www.cryst.ehu.es/


Equivalent Positions

• The symmetry operations associated with a space group 

can be used to generate positions which are symmetrically 

equivalent. Consider tetragonal space group P4/m (#83):

• For a general point (with 

coordinates x, y, z), the 4

axis parallel c generates 

three new points.

• Each of these four points 

is then reflected in the 

z=0 plane (z → -z).



Special Positions (space group P4/m)

Multiplicity Wyckoff Site Symmetry Equivalent Positions

8 l 1 x, y, z; -y, x, z; -x, -y, z; y, -x, z;
x, y, -z; -y, x, -z; -x, -y, -z; y, -x, -z

4 k m x, y, ½ ; -y, x, ½; -x, -y, ½; y, -x, ½

4 j m x, y, 0; -y, x, 0; -x, -y, 0; y, -x, 0

4 i 2 0, ½, z; ½, 0, z; 0, ½, -z; ½, 0, -z

2 h 4 ½, ½, z; ½, ½, -z

2 g 4 0, 0, z; 0, 0, -z

2 f 2/m 0, ½, ½; ½, 0, ½

2 e 2/m 0, ½, 0; ½, 0, 0  

1 d 4/m ½, ½, ½ 

1 c 4/m ½, ½, 0

1 b 4/m 0, 0, ½

1 a 4/m 0, 0, 0



Example Structures - Perovskite 

Cubic (T = 1720 K)

Formula: CaTiO3 (Z=1)

Space Group: 𝑃𝑚ത3𝑚 (#221)

Lattice Parameter: a = 3.8967 Å

Atoms: Ca in 1a (0,0,0)

Ti in 1b (½,½,½)

O in 3c (½,½,0), (½,0,½), (0,½,½)

Tetragonal (T = 1598 K)

Formula: CaTiO3 (Z=4)

Space Group: I4/𝑚𝑐𝑚 (#140)

Lattice Parameters: a = 5.4984 Å, c = 7.7828 Å

Atoms: Ca in 4b (0,½,¼), (½,0,¼), (0,½,¾), (½,0,¾)

Ti in 4c (0,0,0), (0,0,½), (½,½,½), (½,½,0)

O in 4a (0,0,¼), (0,0,¾), (½,½,¾), (½,½,¼)

O in 8h (x,x+½,0), (-x+½,x,0), (-x,-x+½,0),

(x+½,-x,0) + (½,½,½)

where x = 0.2284



Example Structures - Perovskite 

Orthorhombic (T = 296 K)

Mineral Name: Perovskite

Formula: CaTiO3 (Z=4)

Space Group: 𝑃𝑏𝑛𝑚 (#62)

Lattice Parameters: 

a = 5.3789 Å, b = 5.4361 Å, c = 7.6388 Å



Powder Patterns - Perovskite 

For more details on this system, see:  Ali, R. & Yashima, M. J. Solid State Chem. 178 (2005) 2867-2872.

Cubic

Tetragonal

Orthorhombic



Powder Patterns - Perovskite 

For more details on this system, see:  Ali, R. & Yashima, M. J. Solid State Chem. 178 (2005) 2867-2872.

Cubic

Tetragonal

Orthorhombic



Reflection Positions - Bragg’s Law

𝟐𝜽𝒄𝒂𝒍𝒄 = 𝟐 𝐬𝐢𝐧−𝟏
𝝀

𝟐𝒅𝒉𝒌𝒍

• Bragg’s law tells us where a 

diffraction peak will be 
located (its 2θ position, in 

degrees, or °)

• The peak position depends 

on the X-ray wavelength (λ) 

and the d-spacing between 

crystal planes (dhkl).

• The d-spacing (dhkl) depends 

on the Miller indices of the 

crystal plane (hkl) and lattice 

parameters of the unit cell.

𝝀 = 𝟐𝒅𝒉𝒌𝒍 𝐬𝐢𝐧𝜽



Crystal Planes & Interplanar Spacing

(010)

d(010)

(120)(111)

• Diffraction is analogous to 

reflection of X-rays from planes 

in the unit cell of the crystal.

• The position of peaks in a 

diffraction pattern depend on the 

distance (d-spacing) between 

crystalline planes.



Miller Indices and Interplanar Spacing

• Crystallographic planes are described using Miller indices (hkl), which 

are derived from the intercepts of the plane with the crystal axes.

Figure courtesy of Michael Gharghouri.

• The distance between lattice planes (d-spacing) is given by:

𝑑ℎ𝑘𝑙
= 𝑉ሾℎ2𝑏2𝑐2 sin2𝛼 + 𝑘2𝑎2𝑐2 sin2𝛽 + 𝑙2𝑎2𝑏2 sin2 𝛾 + 2ℎ𝑙𝑎𝑏2𝑐 cos 𝛼 cos 𝛾 − cos 𝛽



Families of Planes

Figure courtesy of Michael Gharghouri.



Systematic Absences



Summary

• You don’t need to be an expert in crystallography, 

but a basic understanding is important to properly 

interpret your powder diffraction data and perform 

more complicated analysis like Rietveld 

refinement and pair distribution function (PDF) 

analysis.
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