Visualization of 3D Diffraction: MAX3D

Jim Britten, Weiguang Guan, Vicky Jarvis McMaster University, Hamilton, ON, Canada britten@mcmaster.ca

Abstract

MAX3D is a program for the visualization of 3D diffraction data. This includes everything seen by the area detector – not just harvested Bragg spots. The input may be transmission data from a single crystal, reflection data from a textured solid, or diffraction from a thin nanoparticle film on a substrate. Tools have been developed for probing, imaging and exporting selected areas of reciprocal space in terms of 2Theta or HKL. It helps you understand your sample, recognize diffuse scattering and troubleshoot difficult problems. It is a powerful tool for generating teaching materials from real samples. MAX3D is available at no charge for Academic researchers.

SCD - 2D image + scan -> 3DInt vs 2 θ XRD² - 2D image-> 1DInt vs 2 θ

From Bob He's book: Two-Dimensional X-Ray Diffraction

Visualisation of 1D Reciprocal Space

ZnTe a=6.1034 F-43m

Rotate the sample in the beam and collect 2D frames.

The 2D images can be mapped into reciprocal space – onto the surface of Ewald's Sphere

Single Crystal Structure Determination

Visualisation of 3D Reciprocal Space Quasicrystal

Al₇₀Pd₂₁Mn₉ - Geetha Balakrishnan, University of Warwick Nathan Armstrong, Tom Timusk, McMaster

Diffuse Scattering

Hexanapthylbenzene. Laura Harrington, Mike McGlinchey

Diffuse Scattering

Hexanapthylbenzene. Laura Harrington, Mike McGlinchey

GdPb₂Cu₃Se₄ 1200°C for 4 hrs (Plates)

XRD pattern from Panalytical X'Pert Pro Diffractometer, Cu Kα₁ - Forbes, Mozharivskyj

GdPb₂Cu₃Se₄

Phone a friend – Pawel Grochulski. Look at a single grain of the powder on a protein beamline.

Canadian Centre canadien Light de rayonnement Source synchrotron

Canadian Macromolecular Crystallography Facility, 08B1-1 (CMCF-BM) Beamline

Protein SC Diffraction Pattern

Alba Guarne Tamiza Nanji

Rigaku R-Axis4++ Image Plate

Follow Phase Changes

Zheng, Preston, McMaster U

Residual Stress – Sampling 3D RS

(Image from Bob He's book)

Looking for subtle changes in 20 position of line/arc/shell to indicate orientation dependent residual stresses. Hard to see visually – need mathematical analysis.

High angle snapshots of diffraction shell segments in four series of ϕ steps at different ψ tilt angles. Looking for elliptical deviation from spheres where r = $1/d_0$ 220 Ferrite

SCD - 2D image + scan \rightarrow 3D Int vs 2 θ XRD³ - 2D image + scan \rightarrow 3D Int vs 2 θ

From Bob He's book: Two-Dimensional X-Ray Diffraction

A '**pole**' is a unit vector along a diffraction vector representing one grain. For a random powder the number of poles is normalized to 1. Textured samples show a variation in normalized pole density with orientation.

Mo diffraction from surface of tab of an Aluminum weighing dish

Mo diffraction from Al foil (ALCAN)

φ-scan, 2θ=-40, ω=168, χ=54.74, 2s

φ-scan, 2θ=-40, ω=175, χ=54.74, 2s

Mo diffraction from Al foil (ALCAN)

CPDW13 CLS

21

Pole figures from Al foil on Mo CCD

Rolling Direction

Al Foil Pole Figures calculated from ODF (MTEX in Matlab)

... from GADDS User Guide

Texture Example: Au nanoparticle film grown on MgAl₂O₄ substrate

Majdi, Preston, McMaster U

Pole Figures from Au film Stereographic projections of individual 2θ hemispheres

Recent Modifications to MAX3D

- Update VTK and QT libraries
- Merge frame readers into a Unified Reader
- 3D shells of $\Delta 2\theta$ thickness for pole figures
- 3D Clipping
- 2D and 1D projection output
- 3D pointer to identify diffraction features in terms of (fractional) hkl
- Linux version
- Supercomputer cluster version

Mn₅Ni₆Si₄ ; Marek Niewczas, Sheikh Ahmed

Mn₅Ni₆Si₄ ; Marek Niewczas, Sheikh Ahmed

MAX3D --- Visualization of X-Ray Diffraction in 3D Reciprocal Space

File Viewing Help

😂 🖬 🔤 📴 🔽 🔽 🛂 🕸 🛞 🛞

Show outline									
Use logarithmic	scale C*log	(x+1) where (C = 10.00						
Orientation matri	x								
Show a* b* c	* axes		Siz	e: 📲					
a*		,b)*		c*				
-0.207326		-0.14818		0.063	0886	_			
0.125536		-0.00271586	5	0.106	269				
-0.00518867		0.191848		0.050	0.0502328				
-									
Cell: 4.76311, 4	.76311, 7.4	9603 ,89.99	99, 90.0001,	, 120					
Cell: 4.76311, 4. Point probe	.76311, 7.4 probe with	9603 , 89.99	99, 90.0001,	, 120	nadows				
Cell: 4.76311, 4. Point probe	.76311, 7.4 probe with nterest)	9603 , 89.99	99, 90.0001,	, 120 🗹 Sł	nadows				
Cell: 4.76311, 4 Point probe Enable point p VOI (Volume Of In Display Box o	.76311, 7.4 probe with nterest) f VOI	9603 , 89.99	99, 90.0001,	, 120	nadows				
Cell: 4.76311, 4 Point probe Enable point (VOI (Volume Of In Display Box o Defined by a corr V1=11:	.76311, 7.4 probe with nterest) of VOI her and three	9603 , 89.99	199, 90.0001, 1KL	, 120 Sł	nadows				
Cell: 4.76311, 4. Point probe Enable point p VOI (Volume Of In Display Box o Defined by a corr V1=U1: V2=V3×U1:	.76311, 7.4 probe with nterest) of VOI her and thre 0.00 0.00	9603 , 89.99	199, 90.0001, -IKL 0.00	, 120 Sł	0.00	•			
Cell: 4.76311, 4. Point probe Enable point p VOI (Volume Of I) Display Box of Defined by a corr V1=U1: V2=V3xU1: V3=U1xU2:	.76311, 7.4 probe with nterest) f VOI her and thre 0.00 0.00 0.00	9603 , 89.99	H99, 90.0001, HKL 0.00 0.00	, 120 Sh \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.00	•			
Cell: 4.76311, 4 Point probe Enable point (VOI (Volume Of In Display Box of Defined by a corr V1=U1: V2=V3xU1: V3=U1xU2: Corner	.76311, 7.4 probe with nterest) f VOI her and thre 0.00 0.00 0.00 0.00	9603 , 89.99	HAR 0.000 1	, 120	0.00 0.00 0.00				
Cell: 4.76311, 4. Point probe Enable point (VOI (Volume Of In Display Box o Defined by a corr V1=U1: V2=V3×U1: V3=U1×U2: Corner	.76311, 7.4 probe with nterest) f VOI ner and thre 0.00 0.00 0.00 0.00	9603 , 89.99	HAL -KL 0.00 0.00 0.00 0.00 1: 0.00	, 120 ✓ Sł ÷ ÷ * •	0.00 0.00 0.00 0.00 0.00				
Cell: 4.76311, 4. Point probe Enable point p VOI (Volume Of In Display Box o Defined by a corr V1=U1: V2=V3×U1: V3=U1×U2: Corner V1, V2, V3 <- U2:	76311, 7.4	9603 , 89.99	HKL -KL 0.00 0.00 0.00 1: 0.00 2: 0.00	, 120	0.00 0.00 0.00 0.00 0.00 0.00 0.00				

3D Clipping, Reloading at Higher Res

DAX3D --- Visualization of X-Ray Diffraction in 3D Reciprocal Space

File Viewing Help

😂 🖬 🔯 🛃 😢 🔽 🗤 🗤 🖄 🗱 🚱 🛞 🤴

0.00518867 0.191848 cell: 4.76311, 4.76311, 7.49603, 89.9999, 90.000 roint probe Enable point probe with ✓ Outline OI (Volume Of Interest) Ø Display Box of VOI Defined by a corner and three vectors in HKL 11=U1: 2.28 2=V3xU1: -1.10 2.19 3=U1xU2: 0.00 0.00 corner -2.51 0.88) 0.050 01, 120 🗹 S	02328 Shadows				
cell: 4.76311, 4.76311, 7.49603, 89.9999, 90.000 toint probe chable point probe with Could be point probe with Outline OI (volume Of Interest) Display Box of VOI befined by a corner and three vectors in HKL 1=U1: 2.28 2-V3xU1: -1.10 -1.10 2.19 C3=U1xU2: 0.00 corner -2.51 0.88	01, 120	hadows				
Display Box of VOI Defined by a corner and three vectors in HKL 11=U1: 2.28 0.00 2-V3XU1: -1.10 2.19 03=U1XU2: 0.00 0.00 Corner -2.51 0.88	∑ s	0.00				
□ Enable point probe with ○ Outline ○ Display Box of VOI ○ □ Enable point probe with ○ Outline ○ Display Box of VOI ○ □ Enable point probe with ○ Outline ○ Display Box of VOI ○ □ Enable point probe with ○ Outline ○ ○ □ Enable point probe with ○ Outline ○ ○ □ Enable point probe with ○ Outline □ Enable point proble point po		hadows	1			
Coll (Volume Of Interest) Coll (Volume Of Interest) Coll (Volume Of Interest) Display Box of VOI Defined by a corner and three vectors in HKL 1=U1: 2.28 0.00 21=U1: 2.28 201: -1.10 2:19 3=U1xU2: 0.00 corner -2.51 0.88		0.00				
OI (volume Of Interest) Display Box of VOI Defined by a corner and three vectors in HKL 1=U1: 2.28 0.00 2=V3xU1: -1.10 2.19 3=U1xU2: 0.00 0.00 corner -2.51 0.88	4	0.00		14		
Display Box of VOI Defined by a corner and three vectors in HKL 11=U1: 2.28 0.00 22=V3xU1: -1.10 2.19 33=U1xU2: 0.00 0.00 corner -2.51 0.88	4 *	0.00		-		
Control Control <t< td=""><td>4 7</td><td>0.00</td><td></td><td>14</td></t<>	4 7	0.00		14		
I=U1: 2.28 0.00 2=V3xU1: -1.10 2.19 3=U1xU2: 0.00 0.00 corner -2.51 0.88	¢	0.00				
2=V3xU1: -1.10 ↓ 2.19 I3=U1xU2: 0.00 ↓ 0.00 corner -2.51 ↓ 0.88	Ť			Ŧ		
3=U1xU2: 0.00 ♀ 0.00 Corner -2.51 ♀ 0.88		0.00		\$		
Corner -2.51 \$ 0.88	÷	0.87		-		
	-	-0.37		\$		
V1. V2. V3 <- U1. U2	0.00	•	0.00	+		
U2: 0.00	0.00	0.00				
Align VOI with viewing Reload within VOI		2D/1D	projecti	ons		
uine shiles (20 View)						
ender Mode (Still/Interactive): GPU/GPU	•					
iphere view / Pole figure						
	1 70.1	0		141		
tesolution: 100 \$	dius (2 th	ieta): []	19.33	(Q)		
Thi	ckness (2	theta):	1,00	-		

DAX3D --- Visualization of X-Ray Diffraction in 3D Reciprocal Space

File Viewing Help

😂 🖬 🗶 🗠 🕅 1/2 1/3 🕱 1/2 🖉 🏶 🛞 🚱

^

¥

Displayable object 🗹 zoomfineslow : [584 x 487 x 474]

fineslow : [509 x 508 x 519]

Scene	Object
-------	--------

	0.	191848			0.050	2328		
Cell: 4.76311, 4	.76311, 7.496	03,89.9	999, 90.	0001	, 120			
Point probe								
Enable point	probe with	🗹 Outline			S	hadow	S	
VOI (Volume Of I	interest)							
Display Box o	of VOI							
Defined by a cor	ner and three	vectors in	HKL					
V1=U1:	2.28	\$	0.00		÷	0.00		÷
V2=V3xU1;	-1.10	* *	\$ 2.19			0.00	*	
V3=U1xU2:	0.00		0.00			0.87		÷
Corner	-2.51	(0.88		-0.37		\$	
	-	U1:	0.00	-	0.00	-	0.00	\$
V1, V2, V3 <- U	1, U2	U2:	0.00	\$	0.00	-	0.00	+
Alian VOI with v	iewina	Reload	within V	OI		2D/10) project	ions
ewing style:	3D View							
3D view								
Render Mode (St	till/Interactive): GPU/G	PU	33	-			
		Lionistio						-
a constant a second constant of	le figure							
Sphere view / Po								
Sphere view / Pc Center (in hkl):	0	0				D		
Sphere view / Pc Center (in hkl):	0	0		Radiu	is (2 th) eta):	19.33	1
Sphere view / Pc Center (in hkl): Resolution: 100	0	0		Radiu	is (2 the) eta): thet=`	19.33	•
Sphere view / Pc Center (in hkl): Resolution: 100	0	0		Radiu Thicki	is (2 the ness (2	o eta): theta)	19.33): 1.00	4

X

2D and 1D Projections of the VOI

2D/1D projections of VOI

3e+0-

Ó

100

200

X Axis

300

CPDW13 CLS

60 80

X Axis

100 120 140

4e+6-

Ó

100

200

300

X Axis

400

20

40

500

400

500

600

×

Example: 2D Projection Output

	. 5	Ċ	& - =						2D1D-2D	-3.csv - Exce	I a						F	- 9	x t
	File H	lome l	nsert Pa	ge Layout	Formulas	: Data	Review	v View	♀ Tell	me what yo	u want to d						Si	gn in	प्रू Share
-																			
C6 \checkmark : $\times \checkmark f_x$ 0.865470]														~					
	٨	R	C	D	F	F	G	н		1	K	1	M	N	0	D	0	R	S (4)
1	nRows: 58	4		U	-		0	- 11	1	,	ĸ	-	141	TN .	•	P	Q	IX.	
2	Cols: 487																		
3	Origin of \	0 88141	-0.3727671																
4	V2 (Vertic	2,191343	-0.0000001																
5	V1 (Horizo	0	0.0000001																
6	V3 (Integr	0	0.865470]																
7	2374	2541	2722	2904	3079	3178	3363	3554	3743	3935	3963	4157	4360	4559	4761	4820	5000	5172	5
8	12561	12514	12522	12458	12512	12533	12580	12588	12576	12537	12619	12592	12556	12592	12574	12413	12458	12432	12
9	12873	12827	12844	12955	12965	12911	12976	12856	12848	12922	12895	12884	12918	13005	12971	12921	12934	12966	12
10	12477	12565	12529	12608	12581	12640	12652	12690	12631	12740	12703	12711	12753	12753	12661	12683	12698	12721	. 12
11	11715	11692	11668	11728	11757	11729	11668	11700	11739	11763	11787	11791	11833	11856	11722	11782	11813	11792	11
12	11411	11423	11455	11486	11528	11537	11530	11550	11559	11587	11616	11589	11617	11531	11526	11534	11555	11605	11
13	3349	3525	3686	3863	3965	4138	4345	4538	4744	4864	5061	5253	5435	5604	5691	5874	6043	6212	. 64
14	14327	14178	14168	14198	14212	14223	14245	14275	14293	14233	14204	14123	14156	14215	14245	14243	14193	14181	. 14
15	14370	14261	14194	14241	14135	14211	14298	14290	14314	14316	14386	14472	14415	14404	14406	14389	14425	14358	14
16	13825	13861	13860	13924	13926	13949	13945	14000	14044	14063	14111	14109	14154	14089	14152	14107	14186	14225	14
17	12567	12593	12618	12659	12680	12662	12685	12722	12737	12738	12764	12794	12805	12747	12782	12791	12751	12803	12
18	11546	11572	11609	11632	11626	11616	11634	11644	11664	11673	11723	11767	11779	11807	11829	11853	11833	11845	11
19	3877	4061	4239	4341	4530	4740	4933	5098	5194	5376	5573	5764	5968	6144	6235	6418	6612	6799	6!
20	15876	15968	15935	15890	15772	15770	15810	15809	15791	15808	15757	15741	15870	15757	15730	15814	15802	15781	. 15
21	15723	15752	15809	15737	15684	15805	15731	15632	15711	15755	15650	15531	15608	15668	15580	15682	15808	15837	15
22	14331	14363	14403	14478	14413	14429	14444	14418	14401	14455	14443	14522	14538	14540	14593	14615	14624	14649	14
23	12535	12589	12630	12670	12682	12733	12749	12791	12772	12765	12768	12827	12788	12767	12799	12799	12738	12784	12
24	11560	11576	11558	11586	11593	11638	11639	11672	11726	11729	11704	11718	11738	11785	11776	11805	11764	11781	. 11
25	4415	4615	4716	4920	5106	5302	5487	5650	5748	5939	6101	6298	6495	6585	6779	6959	7141	7337	7.
26	16898	16941	16865	16866	16907	16925	16894	16901	16851	16909	16873	16901	16952	16990	17001	16965	16896	17026	17
27	15686	15667	15680	15713	15659	15745	15804	15732	15838	15823	15879	16356	16357	15966	15882	15956	15950	15989	15
28	14131	14170	14275	14274	14377	14415	14437	14437	14394	14401	14362	14417	14457	14512	14551	14557	14548	14591	. 14
29	12531	12539	12572	12598	12616	12661	12704	12700	12729	12771	12763	12793	12825	12802	12765	12781	12785	12783	12 *
	90 E	2D1D-	20-3	(+)								1							F
Re	ady															-		+	100%

Slice View

HK0 > HK8

Electron Diffraction of Mn₅Ni₆Si₄

Current MAX3D project

Reader for 3D Electron Diffraction Data

- EMPAD detector
 - Jo Etheridge, Monash University

Funding Acknowledgements

- SHARCNet Dedicated Programming Awards
 - Ranil Sonnadara
- Mark Hollingsworth, KSU
- Joe Ferrara, Rigaku

- Thank You
 - . . . and for the tutorial . . .

InAsSb Pillars for Multispectral Long-wavelength Infrared Absorption Curtis J. Goosney, Victoria M. Jarvis, James F. Britten, Ray R. LaPierre

311 Pole Figure

